Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,946 result(s) for "Solar System Objects"
Sort by:
The Io UV footprint: Location, inter-spot distances and tail vertical extent
The Io footprint (IFP) consists of one or several spots observed in both jovian hemispheres and is related to the electromagnetic interaction between Io and the magnetosphere. These spots are followed by an auroral curtain, called the tail, extending more than 90° longitude in the direction of planetary rotation. We use recent Hubble Space Telescope images of Jupiter to analyze the location of the footprint spots and tail as a function of Io's location in the jovian magnetic field. We present here a new IFP reference contour—the locus of all possible IFP positions—with an unprecedented accuracy, especially in previously poorly covered sectors. We also demonstrate that the lead angle ‐ the longitudinal shift between Io and the actual IFP position ‐ is not a reliable quantity for validation of the interaction models. Instead, the evolution of the inter‐spot distances appears to be a better diagnosis of the Io‐Jupiter interaction. Moreover, we present observations of the tail vertical profiles as seen above the limb. The emission peak altitude is ∼900 km and remains relatively constant with the distance from the main spot. The altitudinal extent of the vertical emission profiles is not compatible with precipitation of a mono‐energetic electron population. The best fit is obtained for a kappa distribution with a characteristic energy of ∼70 eV and a spectral index of 2.3. The broadness of the inferred electron energy spectrum gives insight into the physics of the electron acceleration mechanism at play above the IFP tail.
Variation of different components of Jupiter's auroral emission
The Hubble Space Telescope (HST) data set obtained over two campaigns in 2007 is used to determine the long‐term variability of the different components of Jupiter's auroras. Three regions on the planet's disc are defined: the main oval, the low‐latitude auroras, and the high‐latitude auroras. The UV auroral power emitted from these regions is extracted and compared to estimated solar wind conditions projected to Jupiter's orbit from Earth. In the first campaign the emitted power originated mainly from the main oval and the high‐latitude regions, and in the second campaign the high‐latitude and main oval auroras were dimmer and less variable, while the low‐latitude region exhibited bright, patchy emission. We show that, apart from during specific enhancement events, the power emitted from the poleward auroras is generally uncorrelated with that of the main oval. The exception events are dawn storms and compression region enhancements. It is shown that the former events, typically associated with intense dawnside main oval auroras, also result in the brightening of the high‐latitude auroras. The latter events associated with compression regions exhibit a particular auroral morphology; that is, where it is narrow and well defined, the main oval is bright and located ∼1° poleward of its previous location, and elsewhere it is faint. Instead there is bright emission in the poleward region in the postnoon sector where distinct, bright, sometimes multiple arcs form.
Altitude of Saturn's aurora and its implications for the characteristic energy of precipitated electrons
Images of Saturn's aurora at the limb have been collected with the Advanced Camera for Surveys on board the Hubble Space Telescope. They show that the peak of Saturn's nightside emission is generally located 900–1300 km above the 1‐bar level. On the other hand, methane and H2 columns overlying the aurora have been determined from the analysis of FUV and EUV spectra, respectively. Using a low‐latitude model, these columns place the emission layer at or above 610 km. One possibility to solve this apparent discrepancy between imaging and spectral observations is to assume that the thermospheric temperature in the auroral region sharply increases at a higher pressure level than in the low‐latitude regions. Using an electron transport code, we estimate the characteristic energy of the precipitated electrons derived from these observations to be in the range 1–5 keV using a low latitude model and 5–30 keV in case of the modified model.
Observations of Jovian polar auroral filaments
In this paper we report a phenomenon hitherto unobserved in Jupiter's ultraviolet polar auroras, specifically thin (∼0.6° wide), long‐lived quasi‐sun‐aligned polar auroral filaments (PAFs) of brightness ∼100 kR spanning the highly variable region poleward of the main oval. This observation, made using Hubble Space Telescope images, is significant since no coherent structures have previously been observed in Jupiter's very high latitude auroral region, and it may help shed light on the dynamics of Jupiter's under‐explored magnetotail. PAFs have been observed in 4 sets of observations over 6 days in 2007, and their occurrence appears to be independent of impinging solar wind conditions. The feature comprises two components: the section toward noon remains fixed in orientation toward the sun, while the anti‐sunward section rotates. We estimate overall rotation rates of ∼0–45% of corotation, values which may indicate the rotation rate of Jupiter's polar ionosphere and tail lobes.
A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter
Martian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4–3.9 μm wavelength range, coordinated with higher–spatial resolution HiRISE and Context Imager images. MRO's new high‐resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Minéralogie, L'Eau, les Glaces et l'Activitié on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9–10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate‐bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian‐aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life.
Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration
The Noachian terrain west of the Isidis basin hosts a diverse collection of alteration minerals in rocks comprising varied geomorphic units within a 100,000 km2 region in and near the Nili Fossae. Prior investigations in this region by the Observatoire pour l'Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) instrument on Mars Express revealed large exposures of both mafic minerals and iron magnesium phyllosilicates in stratigraphic context. Expanding on the discoveries of OMEGA, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has found more spatially widespread and mineralogically diverse alteration minerals than previously realized, which represent multiple aqueous environments. Using CRISM near‐infrared spectral data, we detail the basis for identification of iron and magnesium smectites (including both nontronite and more Mg‐rich varieties), chlorite, prehnite, serpentine, kaolinite, potassium mica (illite or muscovite), hydrated (opaline) silica, the sodium zeolite analcime, and magnesium carbonate. The detection of serpentine and analcime on Mars is reported here for the first time. We detail the geomorphic context of these minerals using data from high‐resolution imagers onboard MRO in conjunction with CRISM. We find that the distribution of alteration minerals is not homogeneous; rather, they occur in provinces with distinctive assemblages of alteration minerals. Key findings are (1) a distinctive stratigraphy, in and around the Nili Fossae, of kaolinite and magnesium carbonate in bedrock units always overlying Fe/Mg smectites and (2) evidence for mineral phases and assemblages indicative of low‐grade metamorphic or hydrothermal aqueous alteration in cratered terrains. The alteration minerals around the Nili Fossae are more typical of those resulting from neutral to alkaline conditions rather than acidic conditions, which appear to have dominated much of Mars. Moreover, the mineralogic diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments.
Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express
The European Space Agency Venus Express Radio Science experiment (VeRa) obtained 118 radio occultation measurements of the Venusian atmosphere between July 2006 and June 2007. Southern latitudes are uniformly sampled; measurements in the northern hemisphere are concentrated near the pole. Radial profiles of neutral number density derived from the occultations cover the altitude range 40–90 km, which are converted to profiles of temperature (T) and pressure (p) versus height (h). Profiles of static stability are found to be latitude‐dependent and nearly adiabatic in the middle cloud region. Below the clouds the stability decreases at high latitudes. At an altitude of 65 km, the VeRa T[p(h)] profiles generally lie between the Venus International Reference Atmosphere (VIRA) and VIRA‐2 models; the retrieved temperatures at any given pressure level typically are within 5 K of those derived from the Pioneer Venus Orbiter Radio Occultation experiments. A large equator‐to‐pole temperature contrast of ∼30 K is found at the 1‐bar (1000 hPa) level. The VeRa observations reveal a distinct cold collar region in the southern hemisphere, complementing that in the north. At the latitudes of the cold collars, the tropopause altitude increases relative to higher and lower latitudes by ≈7 km while the temperature drops roughly 60 K. The observations indicate the existence of a wave number 2 structure poleward of ±75° latitude at altitudes of 62 km.
The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions
The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam‐34 has an f/8, 34 mm focal length lens, and the M‐100 an f/10, 100 mm focal length lens. The M‐34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M‐100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M‐34 can focus from 0.5 m to infinity, and the M‐100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed‐mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression. Key Points The Mars Descent Imager, an f/3 9.7 mm, 2 M pixel color camera operated autonomously during landing taking a descent video at 4 frames/second Mastcam‐34 f/8, 34 mm camera takes <1600 × 1200 pixel images in broad and narrowband color over a field 20° × 15° at a scale of 218 μrad/pixel Mastcam‐100 f/10, 100 mm, f/10 takes <1600 × 1200 pixel images in broad and narrowband color over a field 6.8° × 5.1° at 74 μrad/pixel scale Plain Language Summary Paper describes the Mast cameras and Descent Imager on the Mars Science Laboratory Curiosity rover. Cameras take 2 megapixel color images that can be compressed in both JPEG lossy and predictive lossless format. One of the two Mastcams has a 34 mm lens, equivalent to a consumer camera 35 mm lens, and the other has a 100 mm lens, similar to consumer camera telephoto lens. The descent imager has a very wide angle lens (~90°) and takes wide angle pictures. The Mast cameras are mounted on an azimuth elevation mast so they can scan around the rover and into the sky. The Descent camera always points down. The Mast cameras have different filters to allow for scientific color imaging as well as standard color imaging as performed by consumer cameras.
Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM
We present one Martian year of observations of the density and temperature in the upper atmosphere of Mars (between 60 and 130 km) obtained by the Mars Express ultraviolet spectrometer Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM). Six hundred sixteen profiles were retrieved using stellar occultations technique at various latitude and longitude. The atmospheric densities exhibit large seasonal fluctuations due to variations in the dust content of the lower atmosphere which controls the temperature and, thus, the atmospheric scale height, below 50 km. In particular, the year observed by SPICAM was affected by an unexpected dust loading around Ls = 130° which induced a sudden increase of density above 60 km. The diurnal cycle could not be analyzed in detail because most data were obtained at nighttime, except for a few occultations observed around noon during northern winter. There, the averaged midday profile is found to slightly differ from the corresponding midnight profile, with the observed differences being consistent with propagating thermal tides and variations in local solar heating. About 6% of the observed mesopause temperatures exhibits temperature below the CO2 frost point, especially during northern summer in the tropics. Comparison with atmospheric general circulation model predictions shows that the existing models overestimate the temperature around the mesopause (above 80 to 100 km) by up to 30 K, probably because of an underestimation of the atomic oxygen concentration which controls the CO2 infrared cooling.
Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars
We studied the low‐temperature properties of sodium and magnesium perchlorate solutions as potential liquid brines at the Phoenix landing site. We determined their theoretical eutectic values to be 236 ± 1 K for 52 wt% sodium perchlorate and 206 ± 1 K for 44.0 wt% magnesium perchlorate. Evaporation rates of solutions at various concentrations were measured under martian conditions, and range from 0.07 to 0.49 mm h−1 for NaClO4 and from 0.06 to 0.29 mm h−1 for Mg(ClO4)2. The extrapolation to Phoenix landing site conditions using our theoretical treatment shows that perchlorates are liquid during the summer for at least part of the day, and exhibit very low evaporation rates. Moreover, magnesium perchlorate eutectic solutions are thermodynamically stable over vapour and ice during a few hours a day. We conclude that liquid brines may be present and even stable for short periods of time at the Phoenix landing site.