Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,747
result(s) for
"Solar heating"
Sort by:
Polyaniline‐Coated MOFs Nanorod Arrays for Efficient Evaporation‐Driven Electricity Generation and Solar Steam Desalination
2021
Though evaporation‐driven electricity generation has emerged as a novel eco‐friendly energy and attracted intense interests, it is typically demonstrated in pure water or a very low salt concentration. Integrating evaporation‐driven electricity generation and solar steam desalination simultaneously should be more promising. Herein, a polyaniline coated metal‐organic frameworks (MOFs) nanorod arrays membrane is synthesized which inherits the merits of both polyaniline and MOFs, demonstrating nice stability, good interfacial solar steam desalination, and evaporation‐driven electricity generation. Moreover, an integrated system based on this hybrid membrane achieves good interfacial solar‐heating evaporation and prominently enhanced evaporation‐driven electricity generation under one sun. Notably, the realization of effective seawater desalination and efficient evaporation‐driven electricity generation simultaneously by the non‐carbon‐based materials is reported for the first time, which provides a new alternative way for cogenerating both freshwater and electricity by harvesting energy from seawater and solar light.
The integration of interfacial solar‐heating evaporation and evaporation‐driven electricity generation is achieved based on a rationally designed hybrid membrane with polyaniline coating on the metal‐organic frameworks’ nanorod arrays. This membrane demonstrates effective sea water desalination and efficient evaporation‐driven electricity generation simultaneously under solar light.
Journal Article
Solar Heating and Cooling Systems
2016,2017
'Solar Heating and Cooling Systems' provides comprehensive coverage of this modern energy issue from both a scientific and technical level that is based on original research and the synthesis of consistent bibliographic material that meets the increasing need for modernization and greater energy efficiency to significantly reduce CO2 emissions. Ioan Sarbu and Calin Sebarchievici present a comprehensive overview of all major solar energy technologies, along with the fundamentals, experiments, and applications of solar heating and cooling systems.
A review on active heating for high performance cold-proof clothing
2023
PurposeThe present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of research for each heating mode and identify their limitations. Further, the study provides insights into the optimization of intelligent temperature control algorithms and design considerations for intelligent cold-proof clothing.Design/methodology/approachThis article presents a classification of active heating systems based on five different heating principles: electric heating system, solar heating system, phase-change material (PCM) heating system, chemical heating system and fluid/air heating system. The systems are analyzed and evaluated in terms of heating principle, research advancement, scientific challenges and application potential in the field of cold-proof clothing.FindingsThe rational utilization of active heating modes enhances the thermal efficiency of cold-proof clothing, resulting in enhanced cold-resistance and reduced volume and weight. Despite progress in the development of the five prevalent heating modes, particularly with regard to the improvement and advancement of heating materials, the current integration of heating systems with cold-proof clothing is limited to the torso and limbs, lacking consideration of the thermal physiological requirements of the human body. Additionally, the heating modes of each system tend to be uniform and lack differentiation to meet the varying cold protection needs of various body parts.Research limitations/implicationsThe effective application of multiple heating modes helps the human body to maintain a constant body temperature and thermal equilibrium in a cold environment. The research of heating mode is the basis for realizing the temperature control of cold-proof clothing and provides an effective guarantee for the future development of the intelligent algorithms for temperature control of non-uniform heating of body segments.Practical implicationsThe integration of multiple heating modes ensures the maintenance of a constant body temperature and thermal balance for the wearer in cold environments. The research of heating modes forms the foundation for the temperature regulation of cold-proof clothing and lays the groundwork for the development of intelligent algorithms for non-uniform heating control of different body segments.Originality/valueThe present article systematically reviews five active heating modes suitable for use in cold-proof clothing and offers guidance for the selection of heating systems in future smart cold-proof clothing. Furthermore, the findings of this research provide a basis for future research on non-uniform heating modes that are aligned with the thermal physiological needs of the human body, thus contributing to the development of cold-proof clothing that is better suited to meet the thermal needs of the human body.
Journal Article
Inhibition of Phenol from Entering into Condensed Freshwater by Activated Persulfate during Solar-Driven Seawater Desalination
2022
Recently, solar-driven seawater desalination has received extensive attention since it can obtain considerable freshwater by accelerating water evaporation at the air–water interface through solar evaporators. However, the high air–water interface temperature can cause volatile organic compounds (VOCs) to enter condensed freshwater and result in water quality safety risk. In this work, an antioxidative solar evaporator, which was composed of MoS2 as the photothermal material, expandable polyethylene (EPE) foam as the insulation material, polytetrafluoroethylene (PTFE) plate as the corrosion resistant material, and fiberglass membrane (FB) as the seawater delivery material, was fabricated for the first time. The activated persulfate (PS) methods, including peroxymonosulfate (PMS) and peroxodisulfate (PDS), were applied to inhibit phenol from entering condensed freshwater during desalination. The distillation concentration ratio of phenol (RD) was reduced from 76.5% to 0% with the addition of sufficient PMS or PDS, which means that there was no phenol in condensed freshwater. It was found that the Cl− is the main factor in activating PMS, while for PDS, light, and heat are the dominant. Compared with PDS, PMS can make full utilization of the light, heat, Cl− at the evaporator’s surface, resulting in more effective inhibition of the phenol from entering condensed freshwater. Finally, though phenol was efficiently removed by the addition of PMS or PDS, the problem of the formation of the halogenated distillation by-products in condensed freshwater should be given more attention in the future.
Journal Article
Study on the Performance of a Solar Heating System with Seasonal and Cascade Thermal-Energy Storage
by
Xu, Yujie
,
Yue, Xiuyan
,
Chen, Haisheng
in
Adsorption
,
Air pollution
,
Alternative energy sources
2022
Seasonal solar thermal-energy storage systems used for space heating applications is a promising technology to reduce greenhouse gas emissions. A novel solar heating system with seasonal and cascade thermal-energy storage based on zeolite water is proposed in this study. The system’s efficiency is improved through cascade storage and the release of solar energy. The energy storage density is improved through the deep coupling of daily energy storage and cross-seasonal energy storage. A mathematical model of the system-performance analysis is established. The system performances in the non-heating and heating seasons and throughout the year are analyzed by considering the Chifeng City of China as an application case. The results indicate that the average collection efficiency of the proposed system is 2.88% higher in the non-heating season and 7.4% higher in the heating season than that of the reference system. Furthermore, the utilization efficiency of the proposed system is 37.16%, which is 3.26% higher than that of the reference system. Further, the proposed system has a supply heat of 2135 GJ in the heating season, which is 9.66% higher than the reference system. This study provides a solution for the highly efficient solar energy utilization for large-scale space-heating applications.
Journal Article
The Various Designs of Storage Solar Collectors: A Review
2023
The use of solar energy to heat water is the more critical application of solar energy. Researchers are trying to develop different methods to improve the efficiency of solar water heaters to meet the increasing demand for hot water due to global population growth. To reduce the cost and increase the efficiency of solar heaters, the solar collector and the storage tank are combined into one part, and this system is called solar storage collector. It can be defined as geometric shapes filled with water, painted black, and placed under the influence of sunlight to gain the largest amount of solar energy. This article presents the various designs of solar storage collector. This review showed that design variables and design shape significantly affect the efficiency of the solar heating system. Climate and operational factors also have a strong influence on the performance of solar heating. Furthermore, scientists and researchers have also used nanotechnology, solar cells, and mirrors to improve other stored solar collectors' performance. Finally, recently published articles indicate an increase in interest in improving the efficiency of solar storage collector by creating new designs that enhance the economic and practical viability.
Journal Article
Dynamic Optimization and Performance Analysis of Solar Thermal Storage Systems for Intermittent Heating in High-Altitude Cold Regions
2025
Solar thermal technology is an important component of low-carbon energy systems, but its application potential is constrained by two key factors: the inherent limits of energy flux density and the temporal mismatch between supply and demand. This study examined efficiency losses in building heating systems in Northwest China caused by the mismatch between supply and demand in intermittent solar thermal storage systems. Three typical building heating models (Day–Night Intermittent Mode, Day–Night + Monthly Intermittent Mode, and Composite Intermittent Mode (Day–Night + Weekly + Monthly)) were constructed through SketchUp, integrating the Transient System Simulation Tool (TRNSYS) with improved calculation methods in an innovative way. The study first examined regional energy consumption patterns and the temporal characteristics of building occupancy and then proposed a collaborative optimization framework for thermal collection and storage, focused on improving the dynamic matching algorithm of the thermal collection area ratio and the tank volume ratio and establishing a tank capacity calculation model that considers the time-varying characteristics of heat demand and fluctuations in thermal collection efficiency during the intermittent heating cycle. The results show that compared with continuous operation, the intermittent strategy reduces the annual cumulative heat load by 13–33%, among which the Day–Night Intermittent Mode shows the daily peak load reaches 1.8 times the normal value during restart, while the daily fluctuation amplitude of the Day–Night + Monthly Intermittent Mode decreases by 42%. The corresponding solar energy guarantee rate reaches 86–88%, and the heat storage loss is reduced by 19–27%. The time-varying coupling design method established in this study provides an optimization path that takes into account both system efficiency and economy for intermittent heating scenarios. The proposed dynamic capacity configuration criterion has universal guiding value for the design of solar district heating systems.
Journal Article
Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat
by
Cardemil, José M.
,
Villarruel-Jaramillo, Andrés
,
Escobar, Rodrigo
in
Alternative energy sources
,
Energy consumption
,
Heating
2023
Process heating is the activity with the most energy consumption in the industrial sector. Solar heating (SH) systems are a promising alternative to provide renewable thermal energy to industrial processes. However, factors such as high investment costs and area limitations in industrial facilities hinder their utilization; therefore, hybrid systems that combine two different solar thermal or photovoltaic technologies where each technology operates under conditions that allow a higher overall performance than conventional configurations have been proposed. In this review, we discuss the limitations of conventional SH systems and the potential of hybrid configurations to overcome them. First, the current literature about conventional and hybrid systems is presented. Then, the application of common performance indicators to evaluate hybrid configurations is analyzed. Finally, the limitation, advantages, and potential applications of conventional and hybrid systems are discussed. This work shows that conventional systems are the most promising alternatives in low and high-temperature industrial applications. At the same time, in medium and processes, hybrid configurations have great potential to increase the performance of SH systems and help to boost their adoption in the industrial sector. There are few studies about hybrid systems in industrial applications, and further research is required to determine their potential.
Journal Article
Study on the Roof Solar Heating Storage System of Traditional Residences in Southern Shaanxi, China
2021
Solar energy is a renewable, green, clean, and universal resource that has great potential in rural areas. Combining solar heating technology with building design to increase indoor thermal comfort in winter is an effective energy-saving and environmentally friendly approach. The factors affecting solar building heating mainly include two aspects; one is the lighting area of the building, and the other is the storage of building materials. By increasing the lighting area and using materials with good heat preservation and storage performance, the indoor temperature in winter can be effectively increased, and the heating time can be prolonged, thus decreasing the energy requirements of the building. In this paper, traditional houses in cold winter areas are selected as the research object, and a roof solar heating storage system is proposed. The method is to transform the opaque roof of the traditional houses into a transparent glass roof, and the thermal insulation and heat storage material HDPE is installed in the attic floorboards. The working principle of this system is to increase the amount of indoor solar radiation to raise the indoor temperature and make use of the thermal insulation performance of heat storage materials to prolong the indoor heating time. Through ANSYS software simulation, the heat transfer process, heat transfer mode, and temperature change of the system are analyzed, and the energy saving of the system is analyzed. The system can effectively raise the indoor temperature and has good energy-saving performance. The indoor temperature is raised by 5.8 °C, and the annual heat load of the building is reduced by 1361.92 kW·h, with a reduction rate of 25.02%.
Journal Article
Plasmon‐Driven Defect Healing in Graphene Oxide for Green Fabrication of Superhydrophobic Viscous Oil‐Absorbent With Excellent Photothermal Performance
by
Li, Fan
,
Chao, Shengmao
,
Shao, Hong
in
localized surface plasmon resonance
,
photothermal conversion
,
solar‐heating
2025
ABSTRACT
Chemical reduction of graphene oxide (GO) often requires harsh conditions and introduces structural defects, limiting its application in photothermal‐driven oil spill remediation. Herein, we report a novel plasmon‐driven photochemical reduction strategy using silver nanoparticles (Ag NPs) to achieve defect healing and efficient reduction of GO under solar irradiation at room temperature. The localized surface plasmon resonance (LSPR) of Ag NPs not only promotes the deoxygenation of GO to form a superhydrophobic surface but also repairs the conjugated structure of GO via hot electron transfer, reducing its defect density by 21%. The resulting Ag NPs@rGO composite exhibits strong solar‐spectrum absorption (93.8%) and high photothermal conversion efficiency (89.7%). When coated on a polyurethane (PU) sponge, the material rapidly heats to 81°C within 60 s under 1 sun irradiation, significantly reducing the viscosity of crude oil and achieving an adsorption capacity of 47.2 g/g, six times higher than that of conventional carbon‐based sponges. Remarkably, the sponge maintains stable adsorption performance over 36 absorption‐desorption cycles and demonstrates exceptional chemical/mechanical durability. This study provides an eco‐friendly approach for fabricating high‐quality rGO and highlights its potential for sustainable environmental remediation material.
The visible light‐excited localized surface plasmon resonance (LSPR) effect of Ag NPs can simultaneously deoxygenate GO effectively and repair its conjugated sp2 carbon structure, resulting in the formation of superhydrophobic Ag NPs@rGO coatings on polyurethane sponges. The synergetic effect of rGO and Ag imparts the composite sponge excellent photothermal superhydrophobic properties for viscous oil absorption.
Journal Article