Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
492 result(s) for "Solar system Origin."
Sort by:
A history of the solar system
\"This well illustrated book presents a compact history of the Solar System from its dusty origins 4,600,000 years ago to the present day. Its primary aim is to show how the planets and their satellites, comets, meteors, interplanetary dust, solar radiation and cosmic rays continually interact, sometimes violently, and it reflects humanity's progress in exploring and interpreting this history. The book is intended for a general readership at a time when human and robotic exploration of space is often in the news and should also appeal to students at all levels. It covers the essentials but refers to a large literature which can be accessed via the Internet.\"--Page [4] cover.
Origins: The Scientific Story of Creation
What is life? Where do we come from and how did we evolve? What is the universe and how was it formed? What is the nature of the material world? How does it work? How and why do we think? What does it mean to be human? How do we know?There are many different versions of our creation story. This book tells the version according to modern science. It is a unique account, starting at the Big Bang and travelling right up to the emergence of humans as conscious intelligent beings, 13.8 billion years later. Chapter by chapter, it sets out the current state of scientific knowledge: the origins of space and time; energy, mass, and light; galaxies, stars, and our sun; the habitable earth, and complex life itself. Drawing togetherthe physical and biological sciences, Baggott recounts what we currently know of our history, highlighting the questions science has yet to answer.
Our place in the universe
Our Place in the Universe tells the story of our world, formation of the first galaxies and stars formed from great clouds containing the primordial elements made in the first few minutes; birth of stars, their lives and deaths in fiery supernova explosions; formation of the solar system, its planets and many moons; life on Earth, its needs and vicissitudes on land and in the seas; finally exoplanets, planets that surround distant stars. Interspersed in the text are short pieces on some of those who revealed these wonders to us. It is written in a very authoritative and readable form and contains more than 100 color prints of the marvelous galaxies, and nebula that have been taken from space-based and land-based telescopes carried by NASA missions, the European Space Agency, the European Southern Laboratory in Chile and many other sources.
Multiple generations of grain aggregation in different environments preceded solar system body formation
The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a-silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.
Laboratory Studies Towards Understanding Comets
This review presents some of the recent advancements in our understanding of comets facilitated by laboratory studies, need for new laboratory simulations, and predictions for future explorations. With the spacecraft Rosetta at the comet 67P/Churyumov–Gerasimenko, a large volume of science data is expected to follow early results that have been published recently. The most surprising of them being hard ice shell that bounced the lander Philae a couple of times before settling on the comet. Long evaded molecular nitrogen has now been detected in the comet 67P/CG. The observed density of  470 kg m − 3 is in line with other comet observations, whereas the nature and composition of hydrocarbons detected on the surface are still a puzzle. Observation of D/H ratio that deviates significantly from Earth’s water D/H ratio brings back to the table the long-standing question whether or not water on Earth was delivered by comet impacts. Our review summarizes some of the critical laboratory work that helps improve our understanding of cometary interior (whether amorphous or crystalline or containing clathrates), cometary surface (rich of complex organics), cometary coma and tail (D/H ratio, negative ions, and photoluminescence). Outstanding questions are also discussed.
Early Technology Readiness Level (TRL) Development of the Microfluidic Inorganic Conductivity Detector for Europa and the Solenoid-Based Actuator Assembly for Impact Penetrators
This study introduces an innovative in situ lander/impact-penetrator design tailored for Discovery-class missions to Europa, specifically focused on conducting astrobiological analyses. The platform integrates a microfluidic capacitively coupled contactless conductivity detector (C4D), optimized for the detection of low-concentration salts potentially indicative of biological activity. Our microfluidic system allows for automated sample routing and precise conductivity-based detection, making it suitable for the harsh environmental and logistical demands of Europa’s icy surface. This technology provides a robust toolset for exploring extraterrestrial habitability by enabling in situ chemical analyses with minimal operational intervention, paving the way for advanced astrobiological investigations on Europa.