Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
26,173 result(s) for "Solid Earth"
Sort by:
Secular change in metamorphism and the onset of global plate tectonics
On the contemporary Earth, distinct plate tectonic settings are characterized by differences in heat flow that are recorded in metamorphic rocks as differences in apparent thermal gradients. In this study we compile thermal gradients [defined as temperature/pressure (T/P) at the metamorphic peak] and ages of metamorphism (defined as the timing of the metamorphic peak) for 456 localities from the Eoarchean to Cenozoic Eras to test the null hypothesis that thermal gradients of metamorphism through time did not vary outside of the range expected for each of these distinct plate tectonic settings. Based on thermal gradients, metamorphic rocks are classified into three natural groups: high dT/dP [>775°C/GPa, mean ∼1110°C/GPa (n = 199) rates], intermediate dT/dP [775-375°C/GPa, mean ∼575°C/GPa (n = 127)], and low dT/dP [<375°C/GPa, mean ∼255°C/GPa (n = 130)] metamorphism. Plots of T, P, and T/P against age demonstrate the widespread occurrence of two contrasting types of metamorphism-high dT/dP and intermediate dT/dP-in the rock record by the Neoarchean, the widespread occurrence of low dT/dP metamorphism in the rock record by the end of the Neoproterozoic, and a maximum in the thermal gradients for high dT/dP metamorphism during the period 2.3 to 0.85 Ga. These observations falsify the null hypothesis and support the alternative hypothesis that changes in thermal gradients evident in the metamorphic rock record were related to changes in geodynamic regime. Based on the observed secular changes, we postulate that the Earth has evolved through three geodynamic cycles since the Mesoarchean and has just entered a fourth. Cycle I began with the widespread appearance of paired metamorphism in the rock record, which was coeval with the amalgamation of widely dispersed blocks of protocontinental lithosphere into supercratons, and was terminated by the progressive fragmentation of the supercratons into protocontinents during the Siderian-Rhyacian (2.5 to 2.05 Ga). Cycle II commenced with the progressive reamalgamation of these protocontinents into the supercontinent Columbia and extended until the breakup of the supercontinent Rodinia in the Tonian (1.0 to 0.72 Ga). Thermal gradients of high dT/dP metamorphism rose around 2.3 Ga leading to a thermal maximum in the mid-Mesoproterozoic, reflecting insulation of the mantle beneath the quasi-integral continental lithosphere of Columbia, prior to the geographical reorganization of Columbia into Rodinia. This cycle coincides with the age span of most anorogenic magmatism on Earth and a scarcity of passive margins in the geological record. Intriguingly, the volume of preserved continental crust of Mesoproterozoic age is low relative to the Paleoproterozoic and Neoproterozoic Eras. These features are consistent with a relatively stable association of continental lithosphere between the assembly of Columbia and the breakup of Rodinia. The transition to Cycle III during the Tonian is marked by a steep decline in the thermal gradients of high dT/dP metamorphism to their lowest value and the appearance of low dT/dP metamorphism in the rock record. Again, thermal gradients for high dT/dP metamorphism show a rise to a peak at the end of the Variscides during the formation of Pangea, before another steep decline associated with the breakup of Pangea and the start of a fourth cycle at ca. 0.175 Ga. Although the mechanism by which subduction started and plate boundaries evolved remains uncertain, based on the widespread record of paired metamorphism in the Neoarchean we posit that plate tectonics was established globally during the late Mesoarchean. During the Neoproterozoic there was a change to deep subduction and colder thermal gradients, features characteristic of the modern plate tectonic regime.
Metamorphism and the evolution of subduction on Earth
Subduction is a component of plate tectonics, which is widely accepted as having operated in a manner similar to the present-day back through the Phanerozoic Eon. However, whether Earth always had plate tectonics or, if not, when and how a globally linked network of narrow plate boundaries emerged are matters of ongoing debate. Earth's mantle may have been as much as 200-300 °C warmer in the Mesoarchean compared to the present day, which potentially required an alternative tectonic regime during part or all of the Archean Eon. Here we use a data set of the pressure (P), temperature (T), and age of metamorphic rocks from 564 localities that vary in age from the Paleoarchean to the Cenozoic to evaluate the petrogenesis and secular change of metamorphic rocks associated with subduction and collisional orogenesis at convergent plate boundaries. Based on the thermobaric ratio (T/P), metamorphic rocks are classified into three natural groups: high T/P type (T/P > 775 °C/GPa, mean T/P ∼1105 °C/GPa), intermediate T/P type (T/P between 775 and 375 °C/GPa, mean T/P ∼575 °C/GPa), and low T/P type (T/P < 375 °C/GPa, mean T/P ∼255 °C/GPa). With reference to published thermal models of active subduction, we show that low T/P oceanic metamorphic rocks preserving peak pressures >2.5 GPa equilibrated at P-T conditions similar to those modeled for the uppermost oceanic crust in a wide range of active subduction environments. By contrast, those that have peak pressures <2.2 GPa may require exhumation under relatively warm conditions, which may indicate subduction of young oceanic lithosphere or exhumation during the initial stages of subduction. However, low T/P oceanic metamorphic rocks with peak pressures of 2.5-2.2 GPa were exhumed from depths where, in models of active subduction, the slab and overriding plate change from being decoupled (at lower P) to coupled (at higher P), possibly suggesting a causal relationship. In relation to secular change, the widespread appearance of low T/P metamorphism in the Neoproterozoic represents a 'modern' style of cold collision and deep slab breakoff, whereas rare occurrences of low T/P metamorphism in the Paleoproterozoic may reveal atypical localized regions of cold collision. Low T/P metamorphism is not known from the Archean geological record, but the absence of blueschists in particular is unlikely to reflect secular change in the composition of the oceanic crust. In addition, the premise that the formation of lawsonite requires abnormally low thermal gradients and the postulate that oceanic subduction-related rocks register significantly lower maximum pressures than do continental subduction-related rocks, and imply different mechanisms of exhumation, are not supported. The widespread appearance of intermediate T/P and high T/P metamorphism at the beginning of the Neoarchean, and the subsequent development of a clear bimodality in tectono-thermal environments are interpreted to be evidence of the stabilization of subduction during a transition to a globally linked network of narrow plate boundaries and the emergence of plate tectonics.
A Change in the Geodynamics of Continental Growth 3 Billion Years Ago
Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopie composition of zircons, for which uranium-lead and hafnium isotopie data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.
A review on slow earthquakes in the Japan Trench
Slow earthquakes are episodic slow fault slips. They form a fundamental component of interplate deformation processes, along with fast, regular earthquakes. Recent seismological and geodetic observations have revealed detailed slow earthquake activity along the Japan Trench—the subduction zone where the March 11, 2011, moment magnitude (Mw) 9.0 Tohoku-Oki earthquake occurred. In this paper, we review observational, experimental, and simulation studies on slow earthquakes along the Japan Trench and their research history. By compiling the observations of slow earthquakes (e.g., tectonic tremors, very-low-frequency earthquakes, and slow slip events) and related fault slip phenomena (e.g., small repeating earthquakes, earthquake swarms, and foreshocks of large interplate earthquakes), we present an integrated slow earthquake distribution along the Japan Trench. Slow and megathrust earthquakes are spatially complementary in distribution, and slow earthquakes sometimes trigger fast earthquakes in their vicinities. An approximately 200-km-long along-strike gap of seismic slow earthquakes (i.e., tectonic tremors and very-low-frequency earthquakes) corresponds with the huge interplate locked zone of the central Japan Trench. The Mw 9.0 Tohoku-Oki earthquake ruptured this locked zone, but the rupture terminated without propagating deep into the slow-earthquake-genic regions in the northern and southern Japan Trench. Slow earthquakes are involved in both the rupture initiation and termination processes of megathrust earthquakes in the Japan Trench. We then compared the integrated slow earthquake distribution with the crustal structure of the Japan Trench (e.g., interplate sedimentary units, subducting seamounts, petit-spot volcanoes, horst and graben structures, residual gravity, seismic velocity structure, and plate boundary reflection intensity) and described the geological environment of the slow-earthquake-genic regions (e.g., water sources, pressure–temperature conditions, and metamorphism). The integrated slow earthquake distribution enabled us to comprehensively discuss the role of slow earthquakes in the occurrence process of the Tohoku-Oki earthquake. The correspondences of the slow earthquake distribution with the crustal structure and geological environment provide insights into the slow-earthquake-genesis in the Japan Trench and imply that highly overpressured fluids are key to understanding the complex slow earthquake distribution. Furthermore, we propose that detailed monitoring of slow earthquake activity can improve the forecasts of interplate seismicity along the Japan Trench.
Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle
Mineral inclusions encapsulated in diamonds are the oldest, deepest, and most pristine samples of Earth's mantle. They provide age and chemical information over a period of 3.5 billion years—a span that includes continental crustal growth, atmospheric evolution, and the initiation of plate tectonics. We compiled isotopic and bulk chemical data of silicate and sulfide inclusions and found that a compositional change occurred 3.0 billion years ago (Ga). Before 3.2 Ga, only diamonds with peridotitic compositions formed, whereas after 3.0 Ga, eclogitic diamonds became prevalent. We suggest that this resulted from the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson cycle of plate tectonics.
Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere
Understanding the relationship between different scales of convection that drive plate motions and hotspot volcanism still eludes geophysicists. Using full-waveform seismic tomography, we imaged a pattern of horizontally elongated bands of low shear velocity, most prominent between 200 and 350 kilometers depth, which extends below the well-developed low-velocity zone. These quasi-periodic fingerlike structures of wavelength ~2000 kilometers align parallel to the direction of absolute plate motion for thousands of kilometers. Below 400 kilometers depth, velocity structure is organized into fewer, undulating but vertically coherent, low-velocity plumelike features, which appear rooted in the lower mantle. This suggests the presence of a dynamic interplay between plate-driven flow in the low-velocity zone and active influx of low-rigidity material from deep mantle sources deflected horizontally beneath the moving top boundary layer.
Constraints on Bend‐Faulting and Mantle Hydration at the Marianas Trench From Seismic Anisotropy
Subduction zones are a key link between the surface water cycle and the solid Earth, as the incoming plate carries pore water and hydrous minerals into the subsurface. However, water fluxes from surface to subsurface reservoirs over geologic time are highly uncertain because the volume of water carried in hydrous minerals in the slab mantle is poorly constrained. Estimates of slab mantle hydration based on seismic tomography assume bulk serpentinization, representing an upper bound on water volume. We measure azimuthal seismic anisotropy near the Marianas Trench, use spatial variations in anisotropy to constrain the extent and geometry of bend‐related faulting, and place a lower bound on slab mantle water content for the case where serpentinization is confined within fault zones. The seismic observations can be explained by a minimum of ∼0.85 wt% water in the slab mantle, compared to the upper bound of ∼2 wt% obtained from tomography. Plain Language Summary The global water cycle extends into Earth's interior at subduction zones, where tectonic plates carrying water chemically bound in rocks and minerals descend into the mantle. The amount of water cycled into the mantle by subduction is not well known. Part of the water flux can be estimated by measuring seismic velocities in the subducting plate, since the water‐bearing minerals tend to have slower seismic velocities, but this is an upper bound because it assumes that the water‐bearing minerals are evenly distributed when in reality they are more likely to be localized within fault zones. We use seismic anisotropy, variations in wavespeed with propagation direction, to study the degree of faulting near the Marianas Trench and estimate a lower bound on the water flux from surface to subsurface assuming that water‐bearing minerals are only within faults. Key Points We measure spatial variations in upper mantle anisotropy that indicate bend‐faulting near the Marianas Trench Hydration localized to bend‐faults places a lower bound on the amount of water carried in the subducting slab mantle Synthetic seismograms compared to the observed anisotropy indicate a minimum of 0.85 wt% water in the slab mantle
The oxidation state of the mantle and the extraction of carbon from Earth’s interior
The oxygen fugacity of the deepest rock samples from Earth’s mantle is found to be more oxidized than previously thought, with the result that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe 3+ in silicate minerals during upwelling. Graphite and diamond in the upper mantle Vincenzo Stagno and colleagues report experiments on mantle xenoliths, and find that the oxygen fugacity of the deepest rocks they analyse is at least one order of magnitude more oxidized than previous estimates. They conclude from this that carbon in the asthenospheric mantle will be hosted as graphite or diamond, but it will be oxidized to produce carbonate melt during upwelling. This 'redox melting' relationship has important implications for the extraction of CO 2 from the mantle through decompressive melting. Determining the oxygen fugacity of Earth’s silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet’s formation 1 . Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found 2 , 3 . Here we report the results of experiments to test garnet oxythermobarometry equilibria 4 , 5 under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe 3+ in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe 3+ to total iron in the bulk rock. This ‘redox melting’ relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting.
Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago
Statistical sampling of a large geochemical database reveals a pervasive discontinuity about 2.5 billion years ago, indicating marked changes in mantle and deep-crustal melting, and providing a link between deep Earth processes and the rise of atmospheric oxygen on the Earth. A geochemical discontinuity in the Archaean Brenhin Keller and Blaire Schoene apply statistical sampling techniques to a geochemical database of about 70,000 samples from continental igneous rocks to produce a record of secular geochemical evolution throughout Earth's history. They find, superimposed on the expected gradual geochemical evolution attributable to secular cooling of Earth, a pervasive geochemical discontinuity approximately 2.5 billion years ago. This discontinuity is indicative of dramatic decreases in mantle melt fraction in basalts and in deep crustal melting/fractionation indicators. The Archaean/Proterozoic geochemical transition revealed by this analysis coincides with sudden atmospheric oxygenation at the end of the Archaean aeon, providing a temporal link between deep Earth geochemistry and the rise of atmospheric oxygen. The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics 1 , 2 , but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias 3 , 4 , 5 . Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly 4 ) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary 6 , 7 , these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting—leading to abundant tonalite–trondhjemite–granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation 8 at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.
Early differentiation and volatile accretion recorded in deep-mantle neon and xenon
Noble gas contents of the Iceland mantle plume show that neither the Moon-forming impact nor billions of years of mantle convection has erased the signature of Earth’s heterogeneous accretion and early differentiation. An ancient mantle reservoir preserved This analysis of noble gas content in Icelandic basaltic rocks — material produced by the melting of a deep upwelling of hot rock in Earth's mantle — indicates that their source is less degassed than that of mid-ocean-ridge basalts and that Earth's mantle has accreted volatiles from at least two separate sources. The author concludes that neither the Moon-forming impact nor billions of years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation. The isotopes 129 Xe, produced from the radioactive decay of extinct 129 I, and 136 Xe, produced from extinct 244 Pu and extant 238 U, have provided important constraints on early mantle outgassing and volatile loss from Earth 1 , 2 . The low ratios of radiogenic to non-radiogenic xenon ( 129 Xe/ 130 Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir 1 . However, the low 129 Xe/ 130 Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir 3 , 4 . Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and 20 Ne/ 22 Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower 129 Xe/ 130 Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because 129 I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth’s mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth’s heterogeneous accretion and early differentiation.