Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
25,551
result(s) for
"Solid state physics."
Sort by:
Solid state physics : an introduction
2015
Filling a gap in the literature for a brief course in solid state physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity.
Topological Insulators and Topological Superconductors
by
Bernevig, B. Andrei
,
Hughes, Taylor L
in
Adiabatic theorem
,
Aharonov–Bohm effect
,
Canonical commutation relation
2013,2016
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Solid state insurrection : how the science of substance made American physics matter
\"Solid state physics, the study of the physical properties of solid matter, was the most populous subfield of Cold War American physics. Despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was essential to securing the vast social, political, and financial capital Cold War physics enjoyed in the twentieth century. Solid state's technological bent, and its challenge to the \"pure science\" ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Its research kept physics economically and technologically relevant, sustaining its cultural standing and policy influence long after the sheen of the Manhattan Project had faded. With this book, Joseph D. Martin brings a new perspective to some of the most enduring questions about the role of physics in American history\"-- Provided by publisher.
Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics
by
Jin, Xinsheng
,
Wang, Ying
,
Truhlar, Donald G.
in
Accuracy
,
chemical energetics
,
Chemical reactions
2017
We present the revM06-L functional, which we designed by optimizing against a larger database than had been used for Minnesota 2006 local functional (M06-L) and by using smoothness restraints. The optimization strategy reduced the number of parameters from 34 to 31 because we removed some large terms that increased the required size of the quadrature grid and the number of self-consistent-field iterations. The mean unsigned error (MUE) of revM06-L on 422 chemical energies is 3.07 kcal/mol, which is improved from 3.57 kcal/mol calculated by M06-L. The MUE of revM06-L for the chemical reaction barrier height database (BH76) is 1.98 kcal/mol, which is improved by more than a factor of 2 with respect to the M06-L functional. The revM06-L functional gives the best result among local functionals tested for the noncovalent interaction database (NC51), with an MUE of only 0.36 kcal/mol, and the MUE of revM06-L for the solid-state lattice constant database (LC17) is half that for M06-L. The revM06-L functional also yields smoother potential curves, and it predicts more-accurate results than M06-L for seven out of eight diversified test sets not used for parameterization. We conclude that the revM06-L functional is well suited for a broad range of applications in chemistry and condensed-matter physics.
Journal Article
The second kind of impossible : the extraordinary quest for a new form of matter
\"One of the most fascinating scientific detective stories of the last fifty years, an exciting quest for a new form of matter. The Second Kind of Impossible reads like James Gleick's Chaos combined with an Indiana Jones adventure\"-- Provided by publisher.
Solitons in crystalline processes
by
Fujimoto, Minoru
in
Condensed Matter
,
Condensed matter physics (liquid state & solid state physics)
,
Crystals
2020,2019
Solitons play a fundamental role in ordering processes in crystals. In the first edition, the essential mechanism of structural changes where solitons play the fundamental role of boson statistics was detailed for irreversible thermodynamics in crystals; explaining not only structural transformations and mesoscopic disorder, but also the nonlinear mechanism of superconductivity. A major development and extension presented in this new edition is in the application of soliton theory to polymers and liquid crystals, in addition to capturing both theoretical developments and newer experimental results of soliton analysis in general. This new edition also emphasises the thermodynamics of soft modes, pseudospins and order variables for finite lattice displacements. The soliton statistics of the nonlinear order variables are logically discussed.
The mystery of carbon
2020,2019
The abundance of carbon, coupled with its remarkable chemistry, make the element unique and essential to life and the universe. This book offers a succinct introduction to recent discoveries made in the field of carbon materials, their synthesis, allotropes and the impact this has had on developmental science. The book provides an overview of the carbon atom and its occurrences and examines carbon allotropes including, fullerene, graphene, carbon nanotubes, polyacenes, carbon-based polymers and two-dimensional metal-dichalcogenide electronic structures. By providing a uniquely encompassing and interlinked overview to carbon science, this book helps the reader realise the importance of carbon and how little we know about this mysterious but prevalent atom. It is a valuable reference for materials scientists and an essential text for any solid-state or electrical engineering student.
40 years of berezinskii–kosterlitz–thouless theory
by
José, Jorge V
in
Condensed matter
,
Condensed Matter Physics/Solid State Physics
,
Nuclear physics
2013,2012
On the 40th anniversary of the Berezinskii-Kosterlitz-Thouless Theory (BKT), this informative volume looks back at some of the developments and achievements and varied physics applications which ensued from the beautiful BKT vortex-unbinding seminal idea.
During the last four decades, BKT theory, which is undeniably one of the most important developments in condensed matter and theoretical physics of the second half of the twentieth century, has expanded widely. It has been used and extended from many different theoretical and experimental perspectives. New and unexpected features have been uncovered from the BKT theory. Since its inception, apart from applications in condensed matter physics, the theory has been actively applied in other branches of physics, such as high energy physics, atomic physics, nuclear physics, statistical physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.
An international team of experts, each of whom has left his mark on the developments of this remarkable theory and experimental applications, contribute both historical essays and more detailed current technical and experimental accounts to this volume. These articles highlight the new discoveries from the respective authors' perspectives.
This unique volume celebrates the impact over four decades of the BKT theory on modern physics. In addition to the historical perspective provided by Kosterlitz and Thouless's overview, the volume provides a comprehensive description of experimental and theoretical applications and extensions of the BKT theory.
The Wigner Monte Carlo Method for Nanoelectronic Devices
2013,2010
The emergence of nanoelectronics has led us to renew the concepts of transport theory used in semiconductor device physics and the engineering community. It has become crucial to question the traditional semi-classical view of charge carrier transport and to adequately take into account the wave-like nature of electrons by considering not only their coherent evolution but also the out-of-equilibrium states and the scattering effects.
This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.