Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,301 result(s) for "Solid suspensions"
Sort by:
Theoretical Prediction Method for Erosion Damage of Horizontal Pipe by Suspended Particles in Liquid–Solid Flows
In order to study the erosion of a pipe wall via a liquid–solid suspension flow, a two-phase flow model combined with an erosion forecasting model for multiparticle impact on horizontal pipe wall surfaces was established in this work on the basis of low-cycle fatigue theory. In the model establishment process, the effects of particle motion and material damage were considered, and a simplified method for predicting horizontal wall erosion was obtained. The calculated results showed that the particles impact the wall at a small angle of most liquid flow velocities, causing cutting erosion damage of the wall. The settling velocity and fluctuating velocity of the particles together determine the radial velocity of the particles, which affects the impact angle of the particles. The cutting erosion caused by the small-angle impact of the particles in the pipe is more likely to cause rapid loss of the wall material. Therefore, the pipe wall is usually evenly thinned.
Influence of Harbor Cement Production on the Concentration of Solid Suspension in the Surrounding Atmosphere
Liu, J.; Peng, J.; Huang, F.; Liu, X., and Luo, Y., 2018. Influence of harbor cement production on the concentration of solid suspension in the surrounding atmosphere. In: Liu Z.L. and Mi C. (eds.), Advances in Sustainable Port and Ocean Engineering. Journal of Coastal Research, Special Issue No. 83, pp. 309–315. Coconut Creek (Florida), ISSN 0749-0208. At present, the production of harbor cement has a very serious negative impact on the surrounding air environment. Therefore, a method for studying the concentration of solid suspension in the atmosphere based on AERMOD model is proposed. According to the statistical data and monitoring data of pollutant emission amount of cement production, this kind pollutant is analyzed, and the relationship between pollutant emission intensity and the measured concentration of atmospheric environment is established; harbor cement production is simulated by using the AERMOD mode, to calculate the influence degree of harbor cement production on the suspended solids concentration in the atmosphere surrounding. Experiments show that when the discharge diameter is 2.458 µm, the mass concentration of particulate matter is the maximum of 2.353 mg/m. Based on the results, the distribution characteristics of pollutants in the harbor cement production enterprises can be grasped, to effectively improve the harbor cement production process from the source.
Experimental study on filtration effect of oilfield sewage based on new polyurethane modified materials
In the process of oilfield wastewater treatment, the polymer-modified materials with special wettability have been recognized by many scholars for their high filtration efficiency and good adsorption effect. In this paper, we used micro-computed tomography scanning and infrared scanning technology to further explore the internal structure and surface chemistry of polyurethane modified materials and then established an experimental platform for the filtration performance of polyurethane modified materials. The change of suspended solids concentration and oil content in the sewage was tested under different filtration rate, filter layer thickness, and water quality. The results showed that the porosity of the filter material and the oil-absorbing material was 65.85% and 56.03% respectively, and the difference in the number of oxygen-containing functional groups on the surface of these two materials indicated different adsorption force for sewage impurities. And the polyurethane modified materials had good filtration performance. Through these experiments, we demonstrated that the quality of water filtrated by the polyurethane modified materials met the requirements of the 'National Comprehensive Wastewater Discharge Standards', and the filtration efficiency for suspended particles and oils in oily sewage was higher than 80%. These materials have important practical significance for the harmless treatment of oily sewage.
Modification of dispersion systems and its motion in cylindrical pipes
This paper analyzes the dependence of properties of turbid flow on the dispersion composition and concentration of solid particles. The article presents the features of the transfer of river suspended solids and water in the pressure stations, that is, the effect on the distribution of kinematic and dynamic parameters of the flow of suspended particles of hydraulic transport.
Stirring tank design for powder-mixed EDM SiC/Al and solid-liquid suspension uniformity research
In order to solve the problem of non-uniform powder concentration in electrical discharge machining (EDM) working fluid, a mathematical model of powder particle movement in stirred tank was established, and the flow field and solid-liquid suspension uniformity were simulated in this paper. The factors of slot shape, depth-diameter ratio, blade angle, blade installation height, and solid particle volume fraction which affected flow field distribution, solid suspension particle uniformity, and power consumption were researched, and the stirred tank structure was optimized. When the ratio of spherical stirred tank depth to diameter is 0.8, the blade design angle is 45°, and the installation height of impeller blade is 120 mm, the suspension uniformity of solid particles is the best and the power consumption is the smallest. Under the conditions of Al powder concentration 4 g/L, pulse width 175 μs, and pulse interval 75 μs, the powder-mixed EDM experiment of SiC/Al functionally gradient material was carried out with this optimized stirring device. The results show that the material removal rate of powder-mixed EDM increased by 24.82% and the surface roughness decreased by 27.28% than that of the conventional EDM.
Numerical Simulation of Dense Solid-Liquid Mixing in Stirred Vessel with Improved Dual Axial Impeller
Computational fluid dynamics (CFDs) were adopted in order to investigate the solid suspending process in a dense solid–liquid system (with a solid volume fraction of 30%), agitated by a traditional dual axial impeller and a modified dual axial impeller, otherwise known as a dual triple blade impeller (DTBI) and a dual rigid-flexible triple blade impeller (DRFTBI), respectively. The effects of rotational speed, connection strap length/width, and off-bottom clearance on the solid distribution were investigated. The results show that the proportion of solid concentration larger than 0.4 in the DTBI system was 26.56 times of that in the DRFTBI system. This indicates that the DRFTBI system can strengthen the solid suspension and decrease the solid accumulation in the bottom of the tank. Furthermore, the velocity and turbulent kinetic energy in the DRFTBI system were promoted. In addition, for an optimal selection, the optimum length of connection strap was 1.2 H1, the optimum range of connection strap width was D/7–D/8, and the off-bottom clearance selected as T/4 was better.
Effect of Impeller Clearance and Liquid Level on Critical Impeller Speed in an Agitated Vessel using Different Axial and Radial Impellers
The effect of impeller clearance and liquid level on the critical impeller speed (Njs) for various radial and axial flow impellers in 0.29 m ID agitated vessel has been studied. Five types of radial impellers: Rushton turbine (RT), Straight blade (SB), Curved blade (CB), Curved blade with disc (CBWD) and R130 impeller and four types of axial impellers: Rushton turbine 45o angle (RT 45), Pitched blade (PBT), A320 and HE3 impeller were used. Tap water and resin particle of 0.506 mm were used as liquid and solid phases, respectively. The impeller clearance to vessel diameter (T) was varied between 0.17 and 0.41. The liquid level (H) was also varied as H/T=0.5, H/T=0.75 and H/T=1. The R130 impeller and A320 impeller was found to be more efficient among radial and axial impellers respectively. A new expression for Zwietering constant 'S' was developed to predict critical impeller speed, considering impeller clearance and liquid level for all the impellers. The results obtained here show that the 'S' values increase with increase in clearance, and decrease with liquid level for all impellers and it also depends on the type of impeller.
Computational fluid dynamics modelling of solid suspension in stirred tanks
Solid suspension and mixing are crucial in many important processes, including multiphase catalytic reactions, crystallization, precipitation, etc. In recent years, various efforts have been made to numerically simulate solid–liquid flows in stirred vessels using computational fluid dynamics (CFD). In this article, we present a brief account of our group's efforts at developing and using CFD models for simulating solid suspension in stirred tanks. Computational models were developed and evaluated by comparing model predictions with our data as well as published experimental data. A variety of experimental techniques ranging from torque and wall pressure fluctuations to ultrasound velocity profiler were used. Efforts were made to develop appropriate sub-models for capturing influence of the prevailing turbulence and solid volume fraction on effective inter-phase coupling terms. A hysteresis in variation of the height of the cloud of suspended solid with impeller rotational speed was observed. The hysteresis, besides having applications in realizing better suspension at lower effective power consumption, also offers an attractive evaluation test for CFD models. A new way to carry out dynamic settling of solid cloud by sudden impeller stoppage has been developed. The approach, models and results presented here will be useful for extending applications of CFD models for simulating industrial stirred slurry reactors as well as further research in the field.
Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery
The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.