Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
18,405 result(s) for "Solid waste disposal"
Sort by:
Future directions of municipal solid waste management in Africa
Transformation and rapid population growth in Africa indicates that urbanisation is one of the key determinants of the future of social dynamics and development of the continent. Linked to these changes are increased production levels of Municipal Solid Waste. This book provides recommendations and solutions that derive from current situations, experiences and observations in Africa. This book is a 'must read' for urban planners, environmental engineering students and lecturers, environmental consultants and policy-makers. The book can also be of great help to municipal authorities, as it outlines future directions of Municipal Solid Waste management. These need to be considered by the municipal authorities of most African countries.
A GIS-based multi-criteria decision-making method for the selection of potential municipal solid waste disposal sites in Mersin, Turkey
Due to rapid urbanization and the resulting rapid population increases, an important problem for cities today is the elimination of solid waste or finding suitable places for waste storage. Municipal solid waste disposal (MSWD) site selection is one of the most important steps in urban waste management. Many criteria political, economic, social, and technological should be considered in this process. Geographic information systems (GIS) and multi-criteria decision-making (MCDM) are tools that are superior to traditional methods in the planning phase of site selection studies. In this study, suitable MSWD sites were determined in Mersin (a Turkish province) based on GIS and the analytic hierarchy process, an MCDM method. Unsuitable areas in the study were removed at the beginning of the analysis. Eleven evaluation criteria were selected: elevation, slope, permeability, distance from lineaments, groundwater level, distance from rivers and water surfaces, distance from roads, distance from settlements, distance from protected areas, and land cover. Considering the evaluation and exclusion criteria, 19.12% of the study area was deemed suitable, and 80.88% was determined unsuitable for an MSWD site. An MSWD suitability map was created as a result of the study. The outcomes indicate that 80,377 ha and 83,022 ha of the study area were classified as high and very high suitability, respectively. Based on these results, we evaluate whether the locations of existing solid waste landfills are appropriate and propose alternative solid waste landfills for each district.
Entropy and discrimination measures based q-rung orthopair fuzzy MULTIMOORA framework for selecting solid waste disposal method
Fastest growing population, rapid urbanization, and growth in the disciplines of science and technology cause continually development in the amount and diversity of solid waste. In modern world, evaluation of an appropriate solid waste disposal method (SWDM) can be referred as multi-criteria decision-making (MCDM) problem due to involvement of several conflicting quantitative and qualitative sustainability indicators. The imprecision and ambiguity are usually arisen in SWDM assessment problem, and the q-rung orthopair fuzzy set (q-ROFS) has been recognized as one of the adaptable and valuable ways to tackle the complex uncertain information arisen in realistic problems. In the context of q-ROFSs, entropy is a significant measure for depicting fuzziness and uncertain information of q-ROFS and the discrimination measure is generally used to quantify the distance between two q-ROFSs by evaluating the amount of their discrimination. Thus, the aim of this study is to propose a novel integrated framework based on multi-attribute multi-objective optimization with the ratio analysis (MULTIMOORA) method with q-rung orthopair fuzzy information (q-ROFI). In this approach, an integrated weighting process is presented by combining objective and subjective weights of criteria with q-ROFI. Inspired by the q-rung orthopair fuzzy entropy and discrimination measure, objective weights of criteria are estimated by entropy and discrimination measure-based model. Whereas, the subjective weights are derived based on aggregation operator and the score function under q-ROFS environment. In this respect, novel entropy and discrimination measure are proposed for q-ROFSs. Furthermore, to display the feasibility and usefulness of the introduced approach, a case study related to SWD method selection is presented under q-ROFS perspective. Finally, comparison and sensitivity investigation are presented to confirm the robustness and solidity of the introduced approach.
Megacity solid waste disposal suitability mapping in Dhaka, Bangladesh: an integrated approach using remote sensing, GIS and statistics
Selecting suitable Megacity Solid Waste Disposal (MSWD) sites is a challenging task in densely populated deltas of developing countries, exacerbated by limited public awareness about waste management. One of the major environmental concerns in Dhaka City, the world's densest megacity, is the presence of dumps close to surface water bodies resources. This study employed the Geographic Information System (GIS)-Analytic Hierarchy Process (AHP) framework to integrate geomorphological (slope and flow accumulation), geological (lithological and lineament), hydrogeological (depth to groundwater table and surface waterbody), socioeconomic (Land use land cover, distance to settlement, road, and airport), and climatological (wind direction) determinants, coupled by land-use and hydro-environmental analyses, to map optimal dumps (MSWD O) sites. The resulting preliminary (MSWD P ) map revealed 15 potential landfill areas, covering approximately 5237 hectares (ha). Combining statistical analysis of restricted areas (settlements, water bodies, land use) with AHP-based ratings, the MSWD O map revealed two optimal locations (2285 ha). Additionally, the hydro-environmental analysis confirmed the unsuitability of northern sites due to shallow groundwater (< 5.43 m) and thin clay, leaving 11 options excluded. Sites 12 (Zone A, 2255 ha) and 15 (Zone B, 30 ha), with deeper groundwater tables and thicker clay layers, emerged as optimal choices for minimizing environmental risks and ensuring effective long-term waste disposal. This study successfully integrates remote sensing, geospatial data, and GIS-AHP modeling to facilitate the development of sustainable landfill strategies in similar South Asian delta megacities. Such an approach provides valuable insights for policymakers to implement cost-effective and sustainable waste management plans, potentially minimizing the environmental risks to achieve Sustainable Development Goals (SDGs) 6, 11, 13, and 15.
Evaluation of the effect of landfill leachate on surface and groundwater quality: a case study in tropical Sri Lanka using the evidence of stable isotopes
The disposal of solid wastes is a significant problem in urban areas in many developed and developing countries. Waterways are often subjected to pollution by effluents discharged from solid waste dumpsites. The stable isotopes and water quality data provide useful information on tracing pollutant sources and their contaminant pathways. The effect of a major solid waste dumpsite on surface and groundwater quality of the surrounding area was investigated by measuring water quality parameters and stable isotopes of deuterium ( 2 H), oxygen ( 18 O), 15 N‐ΝΟ 3 and 18 O-NO 3 in tropical Sri Lanka. The surface water and groundwater wells close to the dumpsite indicated clear evidence of leachate contamination with enriched total dissolved solids (TDS), total suspended solids (TSS), ammonia, biochemical oxygen demand (BOD 5 ) and Cl − levels. The correlation of groundwater quality parameters, i.e. EC (− r 2 = 0.8), TDS (− r 2 = 0.8), TSS (− r 2 = 0.5), ammonia (− r 2 = 0.4), phosphates (−0.6), sulphates (−0.5), Cl − (−0.6) and isotope δ 2 H‰ (−0.9) with distance from the dumpsite, further confirmed the effects of dumpsite on groundwater quality. The composition of δ 15 N‐ΝΟ 3 and δ 18 O-NO 3 isotopes in the groundwater indicated that the dominant source of NO 3 − to groundwater is manure septic originating from the dumpsite. The findings of the study provided clear evidence of the effect of open dumping on the water resources of the surrounding area and the need for remedial measures.
Environmental and health impact of solid waste management activities
This book, written by international experts, discusses the various waste disposal options that are available (landfill, incineration, composting, recycling) and then reviews their impact on the environment, and particularly on human health. Comprehensive and highly topical, this book will make a strong contribution to scientific knowledge in the area, and will be of value to scientists and policy-makers.
Abundance, Characteristics, and Microplastics Load in Informal Urban Drainage System Carrying Intermixed Liquid Waste Streams
This first-of-its-kind study systematically assesses the abundance and characteristics of Microplastics (MPs) in different categories of informal open drains (nallas) carrying different liquid waste streams from different functional areas of an Indian city. Such drains are part of the informal urban drainage system that carries wastewater, stormwater, industrial effluent, and rural runoff. Logistical and locational limitations of traditional wastewater (WW) sampling methods severely limit their application in open drains. To overcome sampling challenges owing to complex geography, vast drainage network spread across different functional areas of the entire city, and local challenges, appropriately modified sampling strategies were adopted to collect samples from 35 open WW drains (small/local, intermediatory, and large). MPs (50μm-5mm) were present in a bucket, and net samples obtained from all 35 WW drains. The average MP concentration in WW drains was 4.20 ± 1.40 particles/L (bucket samples) and 5.19 ± 1.32 particles/L (net samples). A declining trend of MPs abundance was observed from larger to smaller drains, confirming that smaller and intermediatory drains (carrying WW from different functional areas of the city) are discharging their MP loads into larger drains. Intermixing different WW streams (municipal WW, stormwater surface runoff, agricultural runoff, and industrial WW) increases MP levels in drains. The local riverine ecosystem is being put at risk by a daily MPs load of 12.6 x 108 particles discharged from 9 larger drains into the local river Kharun. To protect the riverine ecosystem, controlling the high daily MPs load from such drains is important. Diversion of WW drains through constructed wetlands built near river banks can be a cost-effective solution. Because the entire Indian subcontinent and parts of Africa rely mainly on such drains having similar characteristics and local conditions, the findings of this study reflect the status and pattern of MPs pollution in informal drains of the entire Indian subcontinent and can be used by stakeholders and governments to take mitigative and preventive measures to manage the MPs pollution and protect the local riverine ecosystem.
Suitable Sites Identification for Solid Waste Disposal Using Geographic Information System and Analytical Hierarchy Process Method in Debark Town, Northwestern Ethiopia
Proper site selection for solid waste disposal is a significant issue in the management of solid waste. The present study has been carried out in Debark town, Amhara region, Northwestern Ethiopia, with an analytical hierarchy process (AHP) method and geographic information system (GIS) tools to locate the suitable solid waste disposal sites. In the present study, the following eleven thematic layers such as groundwater level, lithology, land use/land cover, precipitation, soil types, elevation, and slope, distance from the (drainages, springs, lineaments, and roads), and their sub-criteria have been used for the selection of suitable solid waste disposal sites. The above-mentioned thematic factors and their sub-criteria standardized weights and consistency ratios have been calculated and checked using the AHP method. The outcome of this study shows (2 km 2 area) 2.50%, (3 km 2 area) 3%, and (77 km 2 area) 94.5% of the area is highly, moderately, and unsuitable, respectively, for the siting the solid waste disposal site in the present study area. The current study results show the effectiveness of GIS tools and the AHP method in solid waste disposal site selection analysis.
Thermal effects
This review focuses on the research literature published in 2018 relating to thermal effects in wastewater and solid waste treatment. This review is divided into the following sections: treatment of wastewater and sludge, removal and recovery of nitrogen and phosphorus, reduction and recovery of heavy metals, membrane technology, and treatment and disposal of solid wastes.
Municipal solid waste management and landfilling technologies: a review
The USA, China and India are the top three producers of municipal solid waste. The composition of solid wastes varies with income: low-to-middle-income population generates mainly organic wastes, whereas high-income population produces more waste paper, metals and glasses. Management of municipal solid waste includes recycling, incineration, waste-to-energy conversion, composting or landfilling. Landfilling for solid waste disposal is preferred in many municipalities globally. Landfill sites act as ecological reactors where wastes undergo physical, chemical and biological transformations. Hence, critical factors for sustainable landfilling are landfill liners, the thickness of the soil cover, leachate collection, landfill gas recovery and flaring facilities. Here, we review the impact of landfill conditions such as construction, geometry, weather, temperature, moisture, pH, biodegradable matter and hydrogeological parameters on the generation of landfill gases and leachate. Bioreactor landfills appear as the next-generation sanitary landfills, because they augment solid waste stabilization in a time-efficient manner, as a result of controlled recirculation of leachate and gases. We discuss volume reduction, resource recovery, valorization of dumped wastes, environmental protection and site reclamation toward urban development. We present the classifications and engineered iterations of landfills, operations, mechanisms and mining.