Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
286,681 result(s) for "Solids"
Sort by:
Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques
This study provides a comprehensive review of the efforts utilized in the measurement of water quality parameters (WQPs) with a focus on total dissolved solids (TDS) and total suspended solids (TSS). The current method used in the measurement of TDS and TSS includes conventional field and gravimetric approaches. These methods are limited due to the associated cost and labor, and limited spatial coverages. Remote Sensing (RS) applications have, however, been used over the past few decades as an alternative to overcome these limitations. Although they also present underlying atmospheric interferences in images, radiometric and spectral resolution issues. Studies of these WQPs with RS, therefore, require the knowledge and utilization of the best mechanisms. The use of RS for retrieval of TDS, TSS, and their forms has been explored in many studies using images from airborne sensors onboard unmanned aerial vehicles (UAVs) and satellite sensors such as those onboard the Landsat, Sentinel-2, Aqua, and Terra platforms. The images and their spectral properties serve as inputs for deep learning analysis and statistical, and machine learning models. Methods used to retrieve these WQP measurements are dependent on the optical properties of the inland water bodies. While TSS is an optically active parameter, TDS is optically inactive with a low signal–noise ratio. The detection of TDS in the visible, near-infrared, and infrared bands is due to some process that (usually) co-occurs with changes in the TDS that is affecting a WQP that is optically active. This study revealed significant improvements in incorporating RS and conventional approaches in estimating WQPs. The findings reveal that improved spatiotemporal resolution has the potential to effectively detect changes in the WQPs. For effective monitoring of TDS and TSS using RS, we recommend employing atmospheric correction mechanisms to reduce image atmospheric interference, exploration of the fusion of optical and microwave bands, high-resolution hyperspectral images, utilization of ML and deep learning models, calibration and validation using observed data measured from conventional methods. Further studies could focus on the development of new technology and sensors using UAVs and satellite images to produce real-time in situ monitoring of TDS and TSS. The findings presented in this review aid in consolidating understanding and advancement of TDS and TSS measurements in a single repository thereby offering stakeholders, researchers, decision-makers, and regulatory bodies a go-to information resource to enhance their monitoring efforts and mitigation of water quality impairments.
Solid-state properties of pharmaceutical materials
Presents a detailed discussion of important solid-state properties, methods, and applications of solid-state analysis * Illustrates the various phases or forms that solids can assume and discussesvarious issues related to the relative stability of solid forms and tendencies to undergo transformation * Covers key methods of solid state analysis including X-ray powder diffraction, thermal analysis, microscopy, spectroscopy, and solid state NMR * Reviews critical physical attributes of pharmaceutical materials, mainly related to drug substances, including particle size/surface area, hygroscopicity, mechanical properties, solubility, and physical and chemical stability * Showcases the application of solid state material science in rational selection of drug solid forms, analysis of various solid forms within drug substance and the drug product, and pharmaceutical product development * Introduces appropriate manufacturing and control procedures using Quality by Design, and other strategies that lead to safe and effective products with a minimum of resources and time
Topological Insulators and Topological Superconductors
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
An overview of the environmental pollution and health effects associated with waste landfilling and open dumping
Landfilling is one of the most common waste management methods employed in all countries alike, irrespective of their developmental status. The most commonly used types of landfills are (a) municipal solid waste landfill, (b) industrial waste landfill, and (c) hazardous waste landfill. There is, also, an emerging landfill type called “green waste landfill” that is, occasionally, being used. Most landfills, including those discussed in this review article, are controlled and engineered establishments, wherein the waste ought to abide with certain regulations regarding their quality and quantity. However, illegal and uncontrolled “landfills” (mostly known as open dumpsites) are, unfortunately, prevalent in many developing countries. Due to the widespread use of landfilling, even as of today, it is imperative to examine any environmental- and/or health-related issues that have emerged. The present study seeks to determine the environmental pollution and health effects associated with waste landfilling by adopting a desk review design. It is revealed that landfilling is associated with various environmental pollution problems, namely, (a) underground water pollution due to the leaching of organic, inorganic, and various other substances of concern (SoC) contained in the waste, (b) air pollution due to suspension of particles, (c) odor pollution from the deposition of municipal solid waste (MSW), and (d) even marine pollution from any potential run-offs. Furthermore, health impacts may occur through the pollution of the underground water and the emissions of gases, leading to carcinogenic and non-carcinogenic effects of the exposed population living in their vicinity. Graphical abstract
Municipal solid waste management and landfilling technologies: a review
The USA, China and India are the top three producers of municipal solid waste. The composition of solid wastes varies with income: low-to-middle-income population generates mainly organic wastes, whereas high-income population produces more waste paper, metals and glasses. Management of municipal solid waste includes recycling, incineration, waste-to-energy conversion, composting or landfilling. Landfilling for solid waste disposal is preferred in many municipalities globally. Landfill sites act as ecological reactors where wastes undergo physical, chemical and biological transformations. Hence, critical factors for sustainable landfilling are landfill liners, the thickness of the soil cover, leachate collection, landfill gas recovery and flaring facilities. Here, we review the impact of landfill conditions such as construction, geometry, weather, temperature, moisture, pH, biodegradable matter and hydrogeological parameters on the generation of landfill gases and leachate. Bioreactor landfills appear as the next-generation sanitary landfills, because they augment solid waste stabilization in a time-efficient manner, as a result of controlled recirculation of leachate and gases. We discuss volume reduction, resource recovery, valorization of dumped wastes, environmental protection and site reclamation toward urban development. We present the classifications and engineered iterations of landfills, operations, mechanisms and mining.
Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions
The rapid growth of population and industrialization have intensified the problem of water pollution globally. To meet the challenge of industrialization, the use of synthetic dyes in the textile industry, dyeing and printing industry, tannery and paint industry, paper and pulp industry, cosmetic and food industry, dye manufacturing industry, and pharmaceutical industry has increased exponentially. Among these industries, the textile industry is prominent for the water pollution due to the hefty consumption of water and discharge of coloring materials in the effluent. The discharge of this effluent into the aquatic reservoir affects its biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and pH. The release of the effluents without any remedial treatment will generate a gigantic peril to the aquatic ecosystem and human health. The ecological-friendly treatment of the dye-containing wastewater to minimize the detrimental effect on human health and the environment is the need of the hour. The purpose of this review is to evaluate the catastrophic effects of textile dyes on human health and the environment. This review provides a comprehensive insight into the dyes and chemicals used in the textile industry, focusing on the typical treatment processes for their removal from industrial wastewaters, including chemical, biological, physical, and hybrid techniques.
Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra
A surprise package One of the simplest shapes for which the densest packing arrangement remains unresolved is the regular tetrahedron — despite much theoretical, computational and experimental effort. Using a novel approach involving thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, Sharon Glotzer and colleagues have worked out the densest ordered packing yet for tetrahedra, a configuration with a packing fraction of 0.8324. Unexpectedly, the structure is a dodecagonal quasicrystal, the first example of a quasicrystal formed from hard particles or from non-spherical building blocks. All hard, convex shapes pack more densely than spheres, although for tetrahedra this was demonstrated only very recently. Here, tetrahedra are shown to pack even more densely than previously thought. Thermodynamic computer simulations allow the system to evolve naturally towards high-density states, showing that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal, and yielding the highest packing fractions yet observed for tetrahedra. All hard, convex shapes are conjectured by Ulam to pack more densely than spheres 1 , which have a maximum packing fraction of φ = π/√18 ≈ 0.7405. Simple lattice packings of many shapes easily surpass this packing fraction 2 , 3 . For regular tetrahedra, this conjecture was shown to be true only very recently; an ordered arrangement was obtained via geometric construction with φ = 0.7786 (ref. 4 ), which was subsequently compressed numerically to φ = 0.7820 (ref. 5 ), while compressing with different initial conditions led to φ = 0.8230 (ref. 6 ). Here we show that tetrahedra pack even more densely, and in a completely unexpected way. Following a conceptually different approach, using thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, we observe that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal 7 , 8 , 9 , 10 , which can be compressed to a packing fraction of φ = 0.8324. By compressing a crystalline approximant of the quasicrystal, the highest packing fraction we obtain is φ = 0.8503. If quasicrystal formation is suppressed, the system remains disordered, jams and compresses to φ = 0.7858. Jamming and crystallization are both preceded by an entropy-driven transition from a simple fluid of independent tetrahedra to a complex fluid characterized by tetrahedra arranged in densely packed local motifs of pentagonal dipyramids that form a percolating network at the transition. The quasicrystal that we report represents the first example of a quasicrystal formed from hard or non-spherical particles. Our results demonstrate that particle shape and entropy can produce highly complex, ordered structures.