Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,351 result(s) for "Soybean Proteins - pharmacology"
Sort by:
Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years
We undertook a systematic review and meta-analysis of published papers assessing dietary protein and bone health. We found little benefit of increasing protein intake for bone health in healthy adults but no indication of any detrimental effect, at least within the protein intakes of the populations studied. This systematic review and meta-analysis analysed the relationship between dietary protein and bone health across the life-course. The PubMed database was searched for all relevant human studies from the 1st January 1976 to 22nd January 2016, including all bone outcomes except calcium metabolism. The searches identified 127 papers for inclusion, including 74 correlational studies, 23 fracture or osteoporosis risk studies and 30 supplementation trials. Protein intake accounted for 0–4% of areal BMC and areal BMD variance in adults and 0–14% of areal BMC variance in children and adolescents. However, when confounder adjusted (5 studies) adult lumbar spine and femoral neck BMD associations were not statistically significant. There was no association between protein intake and relative risk (RR) of osteoporotic fractures for total (RR(random) = 0.94; 0.72 to 1.23, I2 = 32%), animal (RR (random) = 0.98; 0.76 to 1.27, I2 = 46%) or vegetable protein (RR (fixed) = 0.97 (0.89 to 1.09, I2 = 15%). In total protein supplementation studies, pooled effect sizes were not statistically significant for LSBMD (total n = 255, MD(fixed) = 0.04 g/cm2 (0.00 to 0.08, P = 0.07), I2 = 0%) or FNBMD (total n = 435, MD(random) = 0.01 g/cm2 (−0.03 to 0.05, P = 0.59), I2 = 68%). There appears to be little benefit of increasing protein intake for bone health in healthy adults but there is also clearly no indication of any detrimental effect, at least within the protein intakes of the populations studied (around 0.8–1.3 g/Kg/day). More studies are urgently required on the association between protein intake and bone health in children and adolescents.
Effect of Soy Protein Supplementation on Muscle Adaptations, Metabolic and Antioxidant Status, Hormonal Response, and Exercise Performance of Active Individuals and Athletes: A Systematic Review of Randomised Controlled Trials
Background Protein supplements are important to maintain optimum health and physical performance, particularly in athletes and active individuals to repair and rebuild their skeletal muscles and connective tissues. Soy protein (SP) has gained popularity in recent years as an alternative to animal proteins. Objectives This systematic review evaluates the evidence from randomised controlled clinical trials of the effects of SP supplementation in active individuals and athletes in terms of muscle adaptations, metabolic and antioxidant status, hormonal response and exercise performance. It also explores the differences in SP supplementation effects in comparison to whey protein. Methods A systematic search was conducted in PubMed, Embase and Web of Science, as well as a manual search in Google Scholar and EBSCO, on 27 June 2023. Randomised controlled trials that evaluated the applications of SPs supplementation on sports and athletic-related outcomes that are linked with exercise performance, adaptations and biomarkers in athletes and physically active adolescents and young adults (14 to 39 years old) were included, otherwise, studies were excluded. The risk of bias was assessed according to Cochrane’s revised risk of bias tool. Results A total of 19 eligible original research articles were included that investigated the effect of SP supplementation on muscle adaptations ( n  = 9), metabolic and antioxidant status ( n  = 6), hormonal response ( n  = 6) and exercise performance ( n  = 6). Some studies investigated more than one effect. SP was found to provide identical increases in lean mass compared to whey in some studies. SP consumption promoted the reduction of exercise-induced metabolic/blood circulating biomarkers such as triglycerides, uric acid and lactate. Better antioxidant capacity against oxidative stress has been seen with respect to whey protein in long-term studies. Some studies reported testosterone and cortisol fluctuations related to SP; however, more research is required. All studies on SP and endurance performance suggested the potential beneficial effects of SP supplementation (10–53.3 g) on exercise performance by improving high-intensity and high-speed running performance, enhancing maximal cardiac output, delaying fatigue and improving isometric muscle strength, improving endurance in recreational cyclists, increasing running velocity and decreasing accumulated lactate levels; however, studies determining the efficacy of soy protein on VO 2 max provided conflicted results. Conclusion It is possible to recommend SP to athletes and active individuals in place of conventional protein supplements by assessing their dosage and effectiveness in relation to different types of training. SP may enhance lean mass compared with other protein sources, enhance the antioxidant status, and reduce oxidative stress. SP supplementation had an inconsistent effect on testosterone and cortisol levels. SP supplementation may be beneficial, especially after muscle damage, high-intensity/high-speed or repeated bouts of strenuous exercise.
Antibacterial and wound healing stimulant nanofibrous dressing consisting of soluplus and soy protein isolate loaded with mupirocin
Severe cutaneous injuries may not heal spontaneously and may necessitate the use of supplementary therapeutic methods. Electrospun nanofibers possess high porosity and specific surface area, which provide the necessary microenvironment for wound healing. Here in, the nanofibers of Soluplus-soy protein isolate (Sol-SPI) containing mupirocin (Mp) were fabricated via electrospinning for wound treatment. The fabricated nanofibers exhibited water absorption capacities of about 300.83 ± 29.72% and water vapor permeability values of about 821.8 ± 49.12 g/m 2 day. The Sol/SPI/Mp nanofibers showed an in vitro degradability of 33.73 ± 3.55% after 5 days. The ultimate tensile strength, elastic modulus, and elongation of the Sol/SPI/Mp nanofibers were measured as 3.61 ± 0.29 MPa, 39.15 ± 5.08 MPa, and 59.11 ± 1.94%, respectively. Additionally, 85.90 ± 6.02% of Mp loaded in the nanofibers was released in 5 days in vitro, and by applying the Mp-loaded nanofibers, 93.06 ± 5.40% and 90.40 ± 5.66% of S. aureus and E. coli bacteria were killed, respectively. Human keratinocyte cells (HaCat) demonstrated notable biocompatibility with the prepared nanofibers. Furthermore, compare to other groups, Sol-SPI-Mp nanofibers caused the fastest re-epithelialization and wound healing in a rat model. The findings of this study present a novel nanofiber-based wound dressing that accelerates the healing of severe skin wounds with the risk of infection.
Effects of whey and soy protein supplementation on inflammatory cytokines in older adults: a systematic review and meta-analysis
Low-grade inflammation is a mediator of muscle proteostasis. This study aimed to investigate the effects of isolated whey and soy proteins on inflammatory markers. We conducted a systematic literature search of randomised controlled trials (RCT) through MEDLINE, Web of Science, Scopus and Cochrane Library databases from inception until September 2021. To determine the effectiveness of isolated proteins on circulating levels of C-reactive protein (CRP), IL-6 and TNF-α, a meta-analysis using a random-effects model was used to calculate the pooled effects (CRD42021252603). Thirty-one RCT met the inclusion criteria and were included in the systematic review and meta-analysis. A significant reduction of circulating IL-6 levels following whey protein [Mean Difference (MD): -0·79, 95 % CI: -1·15, -0·42, I = 96 %] and TNF-α levels following soy protein supplementation (MD: -0·16, 95 % CI: -0·26, -0·05, I = 68 %) was observed. The addition of soy isoflavones exerted a further decline in circulating TNF-α levels (MD: -0·20, 95 % CI: -0·31, -0·08, I = 34 %). According to subgroup analysis, whey protein led to a statistically significant decrease in circulating IL-6 levels in individuals with sarcopenia and pre-frailty (MD: -0·98, 95 % CI: -1·56, -0·39, I = 0 %). These findings may be dependent on participant characteristics and treatment duration. These data support that whey and soy protein supplementation elicit anti-inflammatory effects by reducing circulating IL-6 and TNF-α levels, respectively. This effect may be enhanced by soy isoflavones and may be more prominent in individuals with sarcopenia.
Evaluation of the Multifunctionality of Soybean Proteins and Peptides in Immune Cell Models
Inflammatory and oxidative processes are tightly regulated by innate and adaptive immune systems, which are involved in the pathology of a diversity of chronic diseases. Soybean peptides, such as lunasin, have emerged as one of the most hopeful food-derived peptides with a positive impact on health. The aim was to study the potential antioxidant and immunomodulatory activity of a lunasin-enriched soybean extract (LES). The protein profile of LES was characterized, and its behavior under simulated gastrointestinal digestion was evaluated. Besides its in vitro radical scavenging capacity, LES and lunasin’s effects on cell viability, phagocytic capacity, oxidative stress, and inflammation-associated biomarkers were investigated in both RAW264.7 macrophages and lymphocytes EL4. Lunasin and other soluble peptides enriched after aqueous solvent extraction partially resisted the action of digestive enzymes, being potentially responsible for the beneficial effects of LES. This extract scavenged radicals, reduced reactive oxygen species (ROS) and exerted immunostimulatory effects, increasing nitric oxide (NO) production, phagocytic activity, and cytokine release in macrophages. Lunasin and LES also exerted dose-dependent immunomodulatory effects on EL4 cell proliferation and cytokine production. The modulatory effects of soybean peptides on both immune cell models suggest their potential protective role against oxidative stress, inflammation, and immune response-associated disorders.
Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial
Background: Increased amino acid availability stimulates muscle protein synthesis (MPS), which is critical for maintaining or increasing muscle mass when combined with training. Previous research suggests that whey protein is superior to soy protein in regard to stimulating MPS and muscle mass. Nevertheless, with respect to a future lack of dietary protein and an increasing need for using eco-friendly protein sources it is of great interest to investigate the quality of alternative protein sources, like insect protein. Objective: Our aim was to compare the postprandial amino acid (AA) availability and AA profile in the blood after ingestion of protein isolate from the lesser mealworm, whey isolate, and soy isolate. Design: Six healthy young men participated in a randomized cross-over study and received three different protein supplementations (25 g of crude protein from whey, soy, insect or placebo (water)) on four separate days. Blood samples were collected at pre, 0 min, 20 min, 40 min, 60 min, 90 min, and 120 min. Physical activity and dietary intake were standardized before each trial, and participants were instructed to be fasting from the night before. AA concentrations in blood samples were determined using 1H NMR spectroscopy. Results: A significant rise in blood concentration of essential amino acids (EAA), branched-chain amino acids (BCAA) and leucine was detected over the 120 min period for all protein supplements. Nevertheless, the change in AA profile was significantly greater after ingestion of whey than soy and insect protein (p < 0.05). Area under the curve (AUC) analysis and AA profile revealed comparable AA concentrations for soy and insect protein, whereas whey promoted a ~97% and ~140% greater AUC value than soy and insect protein, respectively. A tendency towards higher AA concentrations beyond the 120 min period was observed for insect protein. Conclusion: We report that ingestion of whey, soy, and insect protein isolate increases blood concentrations of EAA, BCAA, and leucine over a 120 min period (whey > insect = soy). Insect protein induced blood AA concentrations similar to soy protein. However, a tendency towards higher blood AA concentrations at the end of the 120 min period post ingestion was observed for insect protein, which indicates that it can be considered a “slow” digestible protein source.
The beneficial therapeutic effects of plant‐derived natural products for the treatment of sarcopenia
Sarcopenia is an age‐related muscle disorder typically associated with a poor quality of life. Its definition has evolved over time, and several underlying causes of sarcopenia in the elderly have been proposed. However, the exact mechanisms involved in sarcopenia, as well as effective treatments for this condition, are not fully understood. The purpose of this article was to conduct a comprehensive review of previous evidence regarding the definition, diagnosis, risk factors, and efficacy of plant‐derived natural products for sarcopenia. The methodological approach for the current narrative review was performed using PubMed, Scopus, and Web of Science databases, as well as Google Scholar (up to March 2021) in order to satisfy our objectives. The substantial beneficial effects along with the safety of some plant‐derived natural products including curcumin, resveratrol, catechin, soy protein, and ginseng on sarcopenia are reported in this review. Based on clinical studies, nutraceuticals and functional foods may have beneficial effects on physical performance, including handgrip and knee‐extension strength, weight‐lifting capacity, time or distance travelled before feeling fatigued, mitochondrial function, muscle fatigue, mean muscle fibre area, and total number of myonuclei. In preclinical studies, supplementation with herbs and natural bioactive compounds resulted in beneficial effects including increased plantaris mass, skeletal muscle mass and strength production, increased expression of anabolic factors myogenin, Myf5 and MyoD, enhanced mitochondrial capacity, and inhibition of muscle atrophy and sarcopenia. We found that several risk factors such as nutritional status, physical inactivity, inflammation, oxidative stress, endocrine system dysfunction, insulin resistance, history of chronic disease, mental health, and genetic factors are linked or associated with sarcopenia. The substantial beneficial effects of some nutraceuticals and functional foods on sarcopenia, including curcumin, resveratrol, catechin, soy protein, and ginseng, without any significant side effects, are reported in this review. Plant‐derived natural products might have a beneficial effect on various components of sarcopenia. Nevertheless, due to limited human trials, the clinical benefits of plant‐derived natural products remain inconclusive. It is suggested that comprehensive longitudinal clinical studies to better understand risk factors over time, as well as identifying a treatment strategy for sarcopenia that is based on its pathophysiology, be undertaken in future investigations.
The potential function of soy protein hydrolysate to induce myogenic differentiation of C2C12 cells
Muscle satellite cell (MSC) isolation, proliferation, and differentiation are the basis of cultured meat (CM) technology, which emerged as a sustainable and moral substitute for conventional animal agriculture. Notwithstanding the encouraging future of CM, there are still a lot of obstacles to overcome, like the high expense of cell culture media and the need for fetal bovine serum (FBS). The goal of this work is to determine whether plant-based nitrogen source soy protein hydrolysate (SPH) can improve myogenic differentiation and functional development in MSCs cultured for CM by acting as a serum substitute. We concentrated on how Angel Yeast Company’s SPH PU041 affected the C2C12 mouse cell line, a useful model for studying muscle biology and the CM sector. Adding PU041 to cell culture media containing different concentrations of FBS was found to promote C2C12 cell proliferation and elongation, with optimal effects observed at 0.5 g/L. Immunofluorescence and flow cytometry analyses revealed that PU041 up-regulated the protein levels of myosin heavy chain (MyHC) and myogenic differentiation factor 1 (MyoD), key biomarkers in myogenesis. Furthermore, quantitative real-time PCR (qPCR) confirmed the up-regulation of MyHC, MyoD, and myogenin (MyoG) mRNA expression, indicating that PU041 induces myogenic differentiation. The findings suggest that SPH PU041 can potentially be used to reduce the costs associated with CM production as a viable serum substitute, thereby facilitating a more sustainable and ethical approach to food production. However, the precise mechanisms underlying PU041’s effects on myogenic differentiation warrant further investigation.
Soy and Gastrointestinal Health: A Review
Soybean is the most economically important legume globally, providing a major source of plant protein for millions of people; it offers a high-quality, cost-competitive and versatile base-protein ingredient for plant-based meat alternatives. The health benefits of soybean and its constituents have largely been attributed to the actions of phytoestrogens, which are present at high levels. Additionally, consumption of soy-based foods may also modulate gastrointestinal (GI) health, in particular colorectal cancer risk, via effects on the composition and metabolic activity of the GI microbiome. The aim of this narrative review was to critically evaluate the emerging evidence from clinical trials, observational studies and animal trials relating to the effects of consuming soybeans, soy-based products and the key constituents of soybeans (isoflavones, soy proteins and oligosaccharides) on measures of GI health. Our review suggests that there are consistent favourable changes in measures of GI health for some soy foods, such as fermented rather than unfermented soy milk, and for those individuals with a microbiome that can metabolise equol. However, as consumption of foods containing soy protein isolates and textured soy proteins increases, further clinical evidence is needed to understand whether these foods elicit similar or additional functional effects on GI health.
A randomized controlled cross-over trial investigating the acute inflammatory and metabolic response after meals based on red meat, fatty fish, or soy protein: the postprandial inflammation in rheumatoid arthritis (PIRA) trial
Purpose Rheumatoid Arthritis (RA) has a point prevalence of around 20 million people worldwide. Patients with RA often believe that food intake affects disease activity, and that intake of red meat aggravate symptoms. The main objective of the Postprandial Inflammation in Rheumatoid Arthritis (PIRA) trial was to assess whether postprandial inflammation and serum lipid profile are affected differently by a meal including red meat, fatty fish, or a soy protein (vegan) meal. Methods Using a randomized controlled crossover design, 25 patients were assigned to eat isocaloric hamburger meals consisting of red meat (60% beef, 40% pork), fatty fish (salmon), or soy protein for breakfast. Blood samples were taken before meals and at intervals up to 5 h postprandial. The analysis included the inflammation marker interleukin 6 (IL-6) and serum lipids. Results No significant differences in postprandial IL-6 or triglyceride concentrations were found between meals. However, the area under the curve of very low density lipoprotein (VLDL) particle counts, as well as VLDL-4-bound cholesterol, triglycerides, and phospholipids, was higher after the fatty fish compared to both red meat and soy protein. Conclusion Postprandial inflammation assessed by IL-6 did not indicate any acute negative effects of red meat intake compared to fatty fish- or soy protein in patients with RA. The fatty fish meal resulted in a higher number of VLDL-particles and more lipids in the form of small VLDL particles compared to the other protein sources.