Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,293 result(s) for "Space flight Planning."
Sort by:
Star Ark : a living, self-sustaining spaceship
\"As space ventures have become more numerous, leading scientists and theorists have offered ways of building a living habitat in a hostile environment, taking an 'ecosystems' view of space colonization. The contributors to this volume take a radical multi-disciplinary view of the challenge of human space colonization through the ongoing project Persephone. This book fundamentally challenges prevalent ideas about sustainability and proposes a new approach to resource austerity and conservation and providing truly sustainable approaches that are life-promoting\"-- Provided by publisher.
Vision and Voyages for Planetary Science in the Decade 2013-2022
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
Space Operations: Experience, Mission Systems, and Advanced Concepts
Description Space Operations: Experience, Mission Systems, and Advanced Concepts is a collection of materials presented at the 12th SpaceOps Conference, held in Stockholm, Sweden in June 2012. From the almost 300 papers presented and discussed at the conference, those selected for this volume represent a cross section of three main subject areas: Mission Preparation and Management - mission design, development, and planning; Data and Communications - the infrastructure needed on the ground, from antennas to software, in order to communicate with and retrieve data from spaceborne resources; and Mission Execution - a focus on the aspects of specific space missions during preparation for flight and throughout operations. All of the selected papers exemplify the SpaceOps organization's goal of presenting and discussing the current state of space operations and the most recent developments in the field.
Pathways to Exploration
The United States has publicly funded its human spaceflight program on a continuous basis for more than a half-century, through three wars and a half-dozen recessions, from the early Mercury and Gemini suborbital and Earth orbital missions, to the lunar landings, and thence to the first reusable winged crewed spaceplane that the United States operated for three decades. Today the United States is the major partner in a massive orbital facility - the International Space Station - that is becoming the focal point for the first tentative steps in commercial cargo and crewed orbital space flights. And yet, the long-term future of human spaceflight beyond this project is unclear. Pronouncements by multiple presidents of bold new ventures by Americans to the Moon, to Mars, and to an asteroid in its native orbit, have not been matched by the same commitment that accompanied President Kennedy's now fabled 1961 speech-namely, the substantial increase in NASA funding needed to make it happen. Are we still committed to advancing human spaceflight? What should a long-term goal be, and what does the United States need to do to achieve it? Pathways to Exploration explores the case for advancing this endeavor, drawing on the history of rationales for human spaceflight, examining the attitudes of stakeholders and the public, and carefully assessing the technical and fiscal realities. This report recommends maintaining the long-term focus on Mars as the horizon goal for human space exploration. With this goal in mind, the report considers funding levels necessary to maintain a robust tempo of execution, current research and exploration projects and the time/resources needed to continue them, and international cooperation that could contribute to the achievement of spaceflight to Mars. According to Pathways to Exploration , a successful U.S. program would require sustained national commitment and a budget that increases by more than the rate of inflation. In reviving a U.S. human exploration program capable of answering the enduring questions about humanity's destiny beyond our tiny blue planet, the nation will need to grapple with the attitudinal and fiscal realities of the nation today while staying true to a small but crucial set of fundamental principles for the conduct of exploration of the endless frontier. The recommendations of Pathways to Exploration provide a clear map toward a human spaceflight program that inspires students and citizens by furthering human exploration and discovery, while taking into account the long-term commitment necessary to achieve this goal.
Assessment of Planetary Protection Requirements for Mars Sample Return Missions
NASA maintains a planetary protection policy to avoid the forward biological contamination of other worlds by terrestrial organisms, and back biological contamination of Earth from the return of extraterrestrial materials by spaceflight missions. Forward-contamination issues related to Mars missions were addressed in a 2006 National Research Council (NRC) book, Preventing the Forward Contamination of Mars. However, it has been more than 10 years since back-contamination issues were last examined. Driven by a renewed interest in Mars sample return missions, this book reviews, updates, and replaces the planetary protection conclusions and recommendations contained in the NRC's 1997 report Mars Sample Return: Issues and Recommendations. The specific issues addressed in this book include the following: The potential for living entities to be included in samples returned from Mars; Scientific investigations that should be conducted to reduce uncertainty in the above assessment; The potential for large-scale effects on Earth's environment by any returned entity released to the environment; Criteria for intentional sample release, taking note of current and anticipated regulatory frameworks; and The status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere.
The Scientific Context for Exploration of the Moon
Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objective, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2013+. This interim report, which focuses on science of the Moon, presents a number of scientific themes describing broad scientific goals important for lunar research, discussions of how best to reach these goals, a set of three priority areas that follow from the themes, and recommendations for these priorities and related areas. A final report will follow in the summer of 2007.
Space radiation measurements during the Artemis I lunar mission
Space radiation is a notable hazard for long-duration human spaceflight 1 . Associated risks include cancer, cataracts, degenerative diseases 2 and tissue reactions from large, acute exposures 3 . Space radiation originates from diverse sources, including galactic cosmic rays 4 , trapped-particle (Van Allen) belts 5 and solar-particle events 6 . Previous radiation data are from the International Space Station and the Space Shuttle in low-Earth orbit protected by heavy shielding and Earth’s magnetic field 7 , 8 and lightly shielded interplanetary robotic probes such as Mars Science Laboratory and Lunar Reconnaissance Orbiter 9 , 10 . Limited data from the Apollo missions 11 – 13 and ground measurements with substantial caveats are also available 14 . Here we report radiation measurements from the heavily shielded Orion spacecraft on the uncrewed Artemis I lunar mission. At differing shielding locations inside the vehicle, a fourfold difference in dose rates was observed during proton-belt passes that are similar to large, reference solar-particle events. Interplanetary cosmic-ray dose equivalent rates in Orion were as much as 60% lower than previous observations 9 . Furthermore, a change in orientation of the spacecraft during the proton-belt transit resulted in a reduction of radiation dose rates of around 50%. These measurements validate the Orion for future crewed exploration and inform future human spaceflight mission design. Measurements from the heavily shielded Orion spacecraft during the uncrewed Artemis I mission show dose-rate reductions due to shielding and orientation for Van Allen belt crossings and quantify the interplanetary cosmic-ray radiation in a human-rated spacecraft.
Science Overview of the Europa Clipper Mission
The goal of NASA’s Europa Clipper mission is to assess the habitability of Jupiter’s moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25–100 km. The mission’s objectives are to investigate Europa’s interior (ice shell and ocean), composition, and geology; the mission will also search for and characterize any current activity including possible plumes. The science objectives will be accomplished with a payload consisting of remote sensing and in-situ instruments. Remote sensing investigations cover the ultraviolet, visible, near infrared, and thermal infrared wavelength ranges of the electromagnetic spectrum, as well as an ice-penetrating radar. In-situ investigations measure the magnetic field, dust grains, neutral gas, and plasma surrounding Europa. Gravity science will be achieved using the telecommunication system, and a radiation monitoring engineering subsystem will provide complementary science data. The flight system is designed to enable all science instruments to operate and gather data simultaneously. Mission planning and operations are guided by scientific requirements and observation strategies, while appropriate updates to the plan will be made tactically as the instruments and Europa are characterized and discoveries emerge. Following collection and validation, all science data will be archived in NASA’s Planetary Data System. Communication, data sharing, and publication policies promote visibility, collaboration, and mutual interdependence across the full Europa Clipper science team, to best achieve the interdisciplinary science necessary to understand Europa.
Will increasing traffic to the Moon contaminate its precious ice?
Scientists seek guidance on exploring frozen caches at the lunar poles responsibly. Will increasing traffic to the Moon contaminate its precious ice? Scientists seek guidance on exploring frozen caches at the lunar poles responsibly.