Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
3,441
result(s) for
"Spatial analysis Methodology."
Sort by:
Spatial analysis for the social sciences
\"Many theories in the social sciences predict spatial dependence or the similarity of behaviors at neighboring locations. Spatial Analysis for the Social Sciences demonstrates how researchers can diagnose and model this spatial dependence and draw more valid inferences as a result. The book is structured around the well-known Galton's problem and presents a step-by-step guide to the application of spatial analysis. The book examines a variety of spatial diagnostics and models through a series of applied examples drawn from the social sciences. These include spatial lag models that capture behavioral diffusion between actors, spatial error models that account for spatial dependence in errors, and models that incorporate spatial heterogeneity in the effects of covariates. Spatial Analysis for the Social Sciences also examines advanced spatial models for time-series cross-sectional data, categorical and limited dependent variables, count data, and survival data\"-- Provided by publisher.
Handbook of Spatial Statistics
by
Gelfand, Alan E.
in
Mathematical statistics
,
Mathematical statistics -- Methodology
,
Spatial analysis (Statistics)
2010
Based on the work of prominent researchers, this handbook provides broad, thorough coverage of this vibrant area, from historical to contemporary topics. It explores the modeling advances, computational approaches, and methodology that have emerged in recent years. The book focuses on continuous and discrete spatial variation, spatial point patterns, and spatio-temporal processes. It also covers multivariate spatial process models, spatial aggregation, spatial misalignment, and spatial gradients in depth. The theory and applications are illustrated with many real-world data examples.
Understanding GIS through sustainable development goals : case studies with QGIS
by
Holloway, Paul, author
in
QGIS (Computer file)
,
Geographic information systems Study and teaching.
,
Spatial analysis Methodology.
2023
\"This book applies a pedagogical shift to learning GIS as readers employ the concepts and methodologies on real-world problems. This book provides 16 case studies with step-by-step instructions using QGIS, an open-source software. Readers develop GIS skills while learning the fundamentals of spatial data models, projections, and spatial databases, different cartographic methods, such as graduated symbology, change maps, and dynamic visualization, as well as advanced spatial analysis like geoprocessing, multiple criteria analysis, and spatial statistics. The topics chosen are taught in secondary and tertiary education institutions making this a textbook for all students and educators\"-- Provided by publisher.
Principal Component Analysis on Spatial Data: An Overview
by
Demšar, Urška
,
McLoone, Sean
,
Fotheringham, A. Stewart
in
análisis de componentes principales
,
análisis espacial y modelización matemática
,
Atmospheric sciences
2013
This article considers critically how one of the oldest and most widely applied statistical methods, principal components analysis (PCA), is employed with spatial data. We first provide a brief guide to how PCA works: This includes robust and compositional PCA variants, links to factor analysis, latent variable modeling, and multilevel PCA. We then present two different approaches to using PCA with spatial data. First we look at the nonspatial approach, which avoids challenges posed by spatial data by using a standard PCA on attribute space only. Within this approach we identify four main methodologies, which we define as (1) PCA applied to spatial objects, (2) PCA applied to raster data, (3) atmospheric science PCA, and (4) PCA on flows. In the second approach, we look at PCA adapted for effects in geographical space by looking at PCA methods adapted for first-order nonstationary effects (spatial heterogeneity) and second-order stationary effects (spatial autocorrelation). We also describe how PCA can be used to investigate multiple scales of spatial autocorrelation. Furthermore, we attempt to disambiguate a terminology confusion by clarifying which methods are specifically termed \"spatial PCA\" in the literature and how this term has different meanings in different areas. Finally, we look at a further three variations of PCA that have not been used in a spatial context but show considerable potential in this respect: simple PCA, sparse PCA, and multilinear PCA.
Journal Article
Advances in spatial transcriptomics and related data analysis strategies
2023
Spatial transcriptomics technologies developed in recent years can provide various information including tissue heterogeneity, which is fundamental in biological and medical research, and have been making significant breakthroughs. Single-cell RNA sequencing (scRNA-seq) cannot provide spatial information, while spatial transcriptomics technologies allow gene expression information to be obtained from intact tissue sections in the original physiological context at a spatial resolution. Various biological insights can be generated into tissue architecture and further the elucidation of the interaction between cells and the microenvironment. Thus, we can gain a general understanding of histogenesis processes and disease pathogenesis, etc. Furthermore, in silico methods involving the widely distributed R and Python packages for data analysis play essential roles in deriving indispensable bioinformation and eliminating technological limitations. In this review, we summarize available technologies of spatial transcriptomics, probe into several applications, discuss the computational strategies and raise future perspectives, highlighting the developmental potential.
Journal Article
Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades
2023
During the past decades, multiple remote sensing data sources, including nighttime light images, high spatial resolution multispectral satellite images, unmanned drone images, and hyperspectral images, among many others, have provided fresh opportunities to examine the dynamics of urban landscapes. In the meantime, the rapid development of telecommunications and mobile technology, alongside the emergence of online search engines and social media platforms with geotagging technology, has fundamentally changed how human activities and the urban landscape are recorded and depicted. The combination of these two types of data sources results in explosive and mind-blowing discoveries in contemporary urban studies, especially for the purposes of sustainable urban planning and development. Urban scholars are now equipped with abundant data to examine many theoretical arguments that often result from limited and indirect observations and less-than-ideal controlled experiments. For the first time, urban scholars can model, simulate, and predict changes in the urban landscape using real-time data to produce the most realistic results, providing invaluable information for urban planners and governments to aim for a sustainable and healthy urban future. This current study reviews the development, current status, and future trajectory of urban studies facilitated by the advancement of remote sensing and spatial big data analytical technologies. The review attempts to serve as a bridge between the growing “big data” and modern urban study communities.
Journal Article
Opening practice: supporting reproducibility and critical spatial data science
2021
This paper reflects on a number of trends towards a more open and reproducible approach to geographic and spatial data science over recent years. In particular, it considers trends towards Big Data, and the impacts this is having on spatial data analysis and modelling. It identifies a turn in academia towards coding as a core analytic tool, and away from proprietary software tools offering ‘black boxes’ where the internal workings of the analysis are not revealed. It is argued that this closed form software is problematic and considers a number of ways in which issues identified in spatial data analysis (such as the MAUP) could be overlooked when working with closed tools, leading to problems of interpretation and possibly inappropriate actions and policies based on these. In addition, this paper considers the role that reproducible and open spatial science may play in such an approach, taking into account the issues raised. It highlights the dangers of failing to account for the geographical properties of data, now that all data are spatial (they are collected somewhere), the problems of a desire for n = all observations in data science and it identifies the need for a critical approach. This is one in which openness, transparency, sharing and reproducibility provide a mantra for defensible and robust spatial data science.
Journal Article
Distribution-Free Predictive Inference for Regression
by
G'Sell, Max
,
Wasserman, Larry
,
Tibshirani, Ryan J.
in
Computational efficiency
,
computer software
,
Distribution-free
2018
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package
conformalInference
that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
Journal Article
Scale and local modeling: new perspectives on the modifiable areal unit problem and Simpson’s paradox
2022
The concept of ‘spatial scale’, or simply ‘scale’ is implicit in any discussion of global versus local models. The raison d’etre of local models is that a global scale (where here ‘global’ simply refers to all locations within a predefined area of interest) might be the incorrect scale at which to undertake any analysis of spatial processes; the alternative being a local scale (where here ‘local’ refers to individual locations). Here we explore two well-known scale issues in the context of local modeling: the modifiable areal unit problem (MAUP) and Simpson’s paradox. In doing so, we highlight that scale effects play two very different roles in any consideration of local versus global modeling. First, we examine the sensitivity of global and local models to the MAUP and show how the effects of the MAUP in global models are a function of the degree to which processes vary over space. This generates a new insight into the MAUP: it results from the properties of processes rather than the properties of data. Then we highlight the extreme differences that can result when calibrating global and local models and how Simpson’s paradox can arise in this context. In the examination of the MAUP, scale is treated as a measure of the degree to which data are aggregated prior to any form of modeling; in the study of Simpson’s paradox, scale refers to the geographical entity for which a model is calibrated.
Journal Article