Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Special Issue on Machine Learning on Scientific Computing"
Sort by:
Non-linear Manifold Reduced-Order Models with Convolutional Autoencoders and Reduced Over-Collocation Method
Non-affine parametric dependencies, nonlinearities and advection-dominated regimes of the model of interest can result in a slow Kolmogorov n-width decay, which precludes the realization of efficient reduced-order models based on linear subspace approximations. Among the possible solutions, there are purely data-driven methods that leverage autoencoders and their variants to learn a latent representation of the dynamical system, and then evolve it in time with another architecture. Despite their success in many applications where standard linear techniques fail, more has to be done to increase the interpretability of the results, especially outside the training range and not in regimes characterized by an abundance of data. Not to mention that none of the knowledge on the physics of the model is exploited during the predictive phase. In order to overcome these weaknesses, we implement the non-linear manifold method introduced by Lee and Carlberg (J Comput Phys 404:108973, 2020) with hyper-reduction achieved through reduced over-collocation and teacher–student training of a reduced decoder. We test the methodology on a 2d non-linear conservation law and a 2d shallow water models, and compare the results obtained with a purely data-driven method for which the dynamics is evolved in time with a long-short term memory network.
Asymptotic-Preserving Neural Networks for Multiscale Time-Dependent Linear Transport Equations
In this paper we develop a neural network for the numerical simulation of time-dependent linear transport equations with diffusive scaling and uncertainties. The goal of the network is to resolve the computational challenges of curse-of-dimensionality and multiple scales of the problem. We first show that a standard Physics-Informed Neural Network (PINN) fails to capture the multiscale nature of the problem, hence justifies the need to use Asymptotic-Preserving Neural Networks (APNNs). We show that not all classical AP formulations are directly fit for the neural network approach. We construct a micro-macro decomposition based neural network, and also build in a mass conservation mechanism into the loss function, in order to capture the dynamic and multiscale nature of the solutions. Numerical examples are used to demonstrate the effectiveness of this APNNs.
Mesh-Informed Neural Networks for Operator Learning in Finite Element Spaces
Thanks to their universal approximation properties and new efficient training strategies, Deep Neural Networks are becoming a valuable tool for the approximation of mathematical operators. In the present work, we introduce Mesh-Informed Neural Networks (MINNs), a class of architectures specifically tailored to handle mesh based functional data, and thus of particular interest for reduced order modeling of parametrized Partial Differential Equations (PDEs). The driving idea behind MINNs is to embed hidden layers into discrete functional spaces of increasing complexity, obtained through a sequence of meshes defined over the underlying spatial domain. The approach leads to a natural pruning strategy which enables the design of sparse architectures that are able to learn general nonlinear operators. We assess this strategy through an extensive set of numerical experiments, ranging from nonlocal operators to nonlinear diffusion PDEs, where MINNs are compared against more traditional architectures, such as classical fully connected Deep Neural Networks, but also more recent ones, such as DeepONets and Fourier Neural Operators. Our results show that MINNs can handle functional data defined on general domains of any shape, while ensuring reduced training times, lower computational costs, and better generalization capabilities, thus making MINNs very well-suited for demanding applications such as Reduced Order Modeling and Uncertainty Quantification for PDEs.
DCT-Former: Efficient Self-Attention with Discrete Cosine Transform
Since their introduction the Transformer architectures emerged as the dominating architectures for both natural language processing and, more recently, computer vision applications. An intrinsic limitation of this family of “fully-attentive” architectures arises from the computation of the dot-product attention, which grows both in memory consumption and number of operations as O ( n 2 ) where n stands for the input sequence length, thus limiting the applications that require modeling very long sequences. Several approaches have been proposed so far in the literature to mitigate this issue, with varying degrees of success. Our idea takes inspiration from the world of lossy data compression (such as the JPEG algorithm) to derive an approximation of the attention module by leveraging the properties of the Discrete Cosine Transform. An extensive section of experiments shows that our method takes up less memory for the same performance, while also drastically reducing inference time. Moreover, we assume that the results of our research might serve as a starting point for a broader family of deep neural models with reduced memory footprint. The implementation will be made publicly available at https://github.com/cscribano/DCT-Former-Public .
Improved Deep Neural Networks with Domain Decomposition in Solving Partial Differential Equations
An improved neural networks method based on domain decomposition is proposed to solve partial differential equations, which is an extension of the physics informed neural networks (PINNs). Although recent research has shown that PINNs perform effectively in solving partial differential equations, they still have difficulties in solving large-scale complex problems, due to using a single neural network and gradient pathology. In this paper, the proposed approach aims at implementing calculations on sub-domains and improving the expressiveness of neural networks to mitigate gradient pathology. By investigations, it is shown that, although the neural networks structure and the loss function are complicated, the proposed method outperforms the classical PINNs with respect to training effectiveness, computational accuracy, and computational cost.
Data-Driven Reduced Order Modelling for Patient-Specific Hemodynamics of Coronary Artery Bypass Grafts with Physical and Geometrical Parameters
In this work the development of a machine learning-based Reduced Order Model (ROM) for the investigation of hemodynamics in a patient-specific configuration of Coronary Artery Bypass Graft (CABG) is proposed. The computational domain is referred to left branches of coronary arteries when a stenosis of the Left Main Coronary Artery (LMCA) occurs. The method extracts a reduced basis space from a collection of high-fidelity solutions via a Proper Orthogonal Decomposition (POD) algorithm and employs Artificial Neural Networks (ANNs) for the computation of the modal coefficients. The Full Order Model (FOM) is represented by the incompressible Navier-Stokes equations discretized using a Finite Volume (FV) technique. Both physical and geometrical parametrization are taken into account, the former one related to the inlet flow rate and the latter one related to the stenosis severity. With respect to the previous works focused on the development of a ROM framework for the evaluation of coronary artery disease, the novelties of our study include the use of the FV method in a patient-specific configuration, the use of a data-driven ROM technique and the mesh deformation strategy based on a Free Form Deformation (FFD) technique. The performance of our ROM approach is analyzed in terms of the error between full order and reduced order solutions as well as the speed-up achieved at the online stage.
A Line Search Based Proximal Stochastic Gradient Algorithm with Dynamical Variance Reduction
Many optimization problems arising from machine learning applications can be cast as the minimization of the sum of two functions: the first one typically represents the expected risk, and in practice it is replaced by the empirical risk, and the other one imposes a priori information on the solution. Since in general the first term is differentiable and the second one is convex, proximal gradient methods are very well suited to face such optimization problems. However, when dealing with large-scale machine learning issues, the computation of the full gradient of the differentiable term can be prohibitively expensive by making these algorithms unsuitable. For this reason, proximal stochastic gradient methods have been extensively studied in the optimization area in the last decades. In this paper we develop a proximal stochastic gradient algorithm which is based on two main ingredients. We indeed combine a proper technique to dynamically reduce the variance of the stochastic gradients along the iterative process with a descent condition in expectation for the objective function, aimed to fix the value for the steplength parameter at each iteration. For general objective functionals, the a.s. convergence of the limit points of the sequence generated by the proposed scheme to stationary points can be proved. For convex objective functionals, both the a.s. convergence of the whole sequence of the iterates to a minimum point and an O ( 1 / k ) convergence rate for the objective function values have been shown. The practical implementation of the proposed method does not need neither the computation of the exact gradient of the empirical risk during the iterations nor the tuning of an optimal value for the steplength. An extensive numerical experimentation highlights that the proposed approach appears robust with respect to the setting of the hyperparameters and competitive compared to state-of-the-art methods.
Large-Scale Bayesian Optimal Experimental Design with Derivative-Informed Projected Neural Network
We address the solution of large-scale Bayesian optimal experimental design (OED) problems governed by partial differential equations (PDEs) with infinite-dimensional parameter fields. The OED problem seeks to find sensor locations that maximize the expected information gain (EIG) in the solution of the underlying Bayesian inverse problem. Computation of the EIG is usually prohibitive for PDE-based OED problems. To make the evaluation of the EIG tractable, we approximate the (PDE-based) parameter-to-observable map with a derivative-informed projected neural network (DIPNet) surrogate, which exploits the geometry, smoothness, and intrinsic low-dimensionality of the map using a small and dimension-independent number of PDE solves. The surrogate is then deployed within a greedy algorithm-based solution of the OED problem such that no further PDE solves are required. We analyze the EIG approximation error in terms of the generalization error of the DIPNet and show they are of the same order. Finally, the efficiency and accuracy of the method are demonstrated via numerical experiments on OED problems governed by inverse scattering and inverse reactive transport with up to 16,641 uncertain parameters and 100 experimental design variables, where we observe up to three orders of magnitude speedup relative to a reference double loop Monte Carlo method.
Learning Proper Orthogonal Decomposition of Complex Dynamics Using Heavy-ball Neural ODEs
Proper orthogonal decomposition (POD) allows reduced-order modeling of complex dynamical systems at a substantial level, while maintaining a high degree of accuracy in modeling the underlying dynamical systems. Advances in machine learning algorithms enable learning POD-based dynamics from data and making accurate and fast predictions of dynamical systems. This paper extends the recently proposed heavy-ball neural ODEs (HBNODEs) (Xia et al. NeurIPS, 2021] for learning data-driven reduced-order models (ROMs) in the POD context, in particular, for learning dynamics of time-varying coefficients generated by the POD analysis on training snapshots constructed by solving full-order models. HBNODE enjoys several practical advantages for learning POD-based ROMs with theoretical guarantees, including 1) HBNODE can learn long-range dependencies effectively from sequential observations, which is crucial for learning intrinsic patterns from sequential data, and 2) HBNODE is computationally efficient in both training and testing. We compare HBNODE with other popular ROMs on several complex dynamical systems, including the von Kármán Street flow, the Kurganov-Petrova-Popov equation, and the one-dimensional Euler equations for fluids modeling.
A Dual Semismooth Newton Based Augmented Lagrangian Method for Large-Scale Linearly Constrained Sparse Group Square-Root Lasso Problems
Square-root Lasso problems have already be shown to be robust regression problems. Furthermore, square-root regression problems with structured sparsity also plays an important role in statistics and machine learning. In this paper, we focus on the numerical computation of large-scale linearly constrained sparse group square-root Lasso problems. In order to overcome the difficulty that there are two nonsmooth terms in the objective function, we propose a dual semismooth Newton (SSN) based augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the dual problem with the subproblem solved by the SSN method. To apply the SSN method, the positive definiteness of the generalized Jacobian is very important. Hence we characterize the equivalence of its positive definiteness and the constraint nondegeneracy condition of the corresponding primal problem. In numerical implementation, we fully employ the second order sparsity so that the Newton direction can be efficiently obtained. Numerical experiments demonstrate the efficiency of the proposed algorithm.