Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,573
result(s) for
"Speck"
Sort by:
Role of the NLRP3 inflammasome in cancer
by
Atkin, Stephen L.
,
Parsamanesh, Negin
,
Bahrami, Afsane
in
Apoptosis
,
Apoptosis-associated speck-like protein
,
Biomedical and Life Sciences
2018
Inflammasomes are large intracellular multi-protein signalling complexes that are formed in the cytosolic compartment as an inflammatory immune response to endogenous danger signals. The formation of the inflammasome enables activation of an inflammatory protease caspase-1, pyroptosis initiation with the subsequent cleaving of the pro-inflammatory cytokines interleukin (IL)-1β and proIL-18 to produce active forms. The inflammasome complex consists of a Nod-like receptor (NLR), the adapter apoptosis-associated speck-like (ASC) protein, and Caspase-1. Dysregulation of NLRP3 inflammasome activation is involved tumor pathogenesis, although its role in cancer development and progression remains controversial due to the inconsistent findings described. In this review, we summarize the current knowledge on the contribution of the NLRP3 inflammasome on potential cancer promotion and therapy.
Journal Article
Identification of inflammasome signaling proteins in neurons and microglia in early and intermediate stages of Alzheimer's disease
by
Rivero Vaccari, Juan Pablo
,
Sun, Xiaoyan
,
Bramlett, Helen M.
in
adaptor protein apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC)
,
Adaptor proteins
,
Alzheimer Disease - pathology
2023
Alzheimer's disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive function. Inflammasome activation has been suggested to play a critical role in the neuroinflammatory response in AD progression, but the cell‐type expression of inflammasome proteins in the brain has not been fully characterized. In this study, we used samples from the hippocampus formation, the subiculum, and the entorhinal cortex brain from 17 donors with low‐level AD pathology and 17 intermediate AD donors to assess the expression of inflammasome proteins. We performed analysis of hippocampal thickness, β‐amyloid plaques, and hyperphosphorylated tau to ascertain the cellular pathological changes that occur between low and intermediate AD pathology. Next, we determined changes in the cells that express the inflammasome sensor proteins NOD‐like receptor proteins (NLRP) 1 and 3, and caspase‐1. In addition, we stained section with IC100, a humanized monoclonal antibody directed against the inflammasome adaptor protein apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC), and a commercially available anti‐ASC antibody. Our results indicate that hippocampal cortical thickness did not significantly change between low and intermediate AD pathology, but there was an increase in pTau and β‐amyloid clusters in intermediate AD cases. NLRP3 was identified mainly in microglial populations, whereas NLRP1 was seen in neuronal cytoplasmic regions. There was a significant increase of ASC in neurons labeled by IC100, whereas microglia in the hippocampus and subiculum were labeled with the commercial anti‐ASC antibody. Caspase‐1 was present in the parenchyma in the CA regions where amyloid and pTau were identified. Together, our results indicate increased inflammasome protein expression in the early pathological stages of AD, that IC100 identifies neurons in early stages of AD and that ASC expression correlates with Aβ and pTau in postmortem AD brains.
Journal Article
Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt
by
Derbalah, Aly
,
Elsharkawy, Mohsen
,
Hamza, Amany
in
Antibacterial activity
,
antibacterial properties
,
Aquatic Pollution
2020
This study was conducted to evaluate the ability of zinc oxide nanoparticles (ZONPs) with unique properties to protect tomato against the bacterial speck pathogen, caused by
Pseudomonas syringae
pv. tomato DC3000 (Pst). Protection of tomato against bacterial speck using ZONPS was evaluated by its direct antibacterial activity and its ability for inducing resistance in tomato plants. The results revealed that ZONPs showed significant direct antibacterial activity against
Pseudomonas syringae
pv. tomato under laboratory conditions. Moreover, tomato plants treated with ZONPs showed a significant reduction in disease severity and bacterial proliferation relative to non-treated plants. Furthermore, tomato plants treated with ZONPs showed higher self-defense enzyme activity relative to untreated plants. The regulatory and defense genes,
LePR-1a
and
Lipoxygenase
(
LOX
), involved in the salicylic acid (SA) and (JA) signaling pathways, respectively, were highly expressed in tomato plants treated with ZONPs compared to untreated plants. Growth characters of tomato plants treated with ZONPs were significantly enhanced relative to untreated plants. The control of bacterial speck pathogen of tomato using ZONPs through its direct antibacterial and by developing of systemic resistance in treated tomatoes against the pathogen is considered the first report.
Journal Article
Isolation of Pseudomonas syringae pv. Tomato strains causing bacterial speck disease of tomato and marker-based monitoring for their virulence
by
Mahmoud, Amer F.
,
Imran, Muhammad
,
El-Fatah, Bahaa E. S. Abd
in
Animal Anatomy
,
Animal Biochemistry
,
Bacteria
2023
Background
The bacterial speck disease of tomato caused by a bacterial pathogen
Pseudomonas syringae
pv.
tomato
is a most important disease causing severe crop losses.
Methods and results
Present study was conducted to investigate and characterize the population diversity of
P. syringae
pv.
tomato
pathogen isolated from infected tomato plants from various regions of Egypt. Significant variation among the isolates was observed which demonstrated considerable virulence. All isolates were pathogenic and the CFU population recovered from inoculate tomato leaves by isolate Pst-2 was higher than other isolates. Genetic disparity among the isolates was investigated by PCR analysis by amplifying
hrp
Z gene using random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphism (SRAP), and inter-simple sequence repeats (ISSR) markers. The amplified products for ITS1 were found to have 810 bp length whereas 536 bp length was observed for
hrp
Z gene using primer pairs (1406-f/23S-r) and (MM5-F, MM5-R) respectively. The restriction analysis of amplified regions “ITS” and
hrpZ
by using 5 and 4 endonucleases respectively demonstrated slight variation among the bacterial isolates. The results of RAPD, ISSR and SRAP showed higher polymorphism (60.52%) within the isolates which may assist for successful characterization by unique and specific markers based on geographical distribution, origin and virulence intensity.
Conclusion
The results of present study suggested that the use of molecular approach may provide successful and valuable information to differentiate and classify
P. syringae
pv.
tomato
strains in future for the detection and confirmation of pathogenicity.
Journal Article
Comparative Analysis of Canonical Inflammasome Activation by Flow Cytometry, Imaging Flow Cytometry and High-Content Imaging
by
Biedenweg, Doreen
,
Bossaller, Lukas
,
Bekeschus, Sander
in
Adapter proteins
,
Biomedical and Life Sciences
,
Biomedicine
2025
Inflammasome activation occurs in various diseases, including rare diseases that require multicenter studies for investigation. Flow cytometric analysis of ASC speck
+
cells in patient samples can be used to detect cell type-specific inflammasome activation. However, this requires standardized sample processing and the ability to compare data from different flow cytometers. To address this issue, we analyzed stimulated and unstimulated PBMCs from healthy donors using seven different flow cytometers. Additionally, human PBMCs were analyzed by fluorescence microscopy, imaging flow cytometry and high-content imaging (HCI). Flow cytometers differed significantly in their ability to detect ASC speck
+
cells. Aria III, Astrios EQ, and Canto II performed best in separating ASC speck
+
from diffuse ASC cells. Imaging flow cytometry and HCI provided additional insight into ASC speck formation based on image-based parameters. For optimal results, the ability to separate cells with diffuse ASC from ASC speck
+
cells is decisive. Image-based parameters can also differentiate cells with diffuse ASC from ASC speck
+
cells. For the first time, we analyzed ASC speck detection by HCI in PBMCs and demonstrated advantages of this technique, such as high-throughput, algorithm-driven image quantification and 3D-rendering. Thus, inflammasome activation by ASC speck formation can be detected by various technical methods. However, the results may vary depending on the device used.
Journal Article
Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes
by
Sharma, Meenakshi
,
de Alba, Eva
in
Animals
,
Apoptosis
,
CARD Signaling Adaptor Proteins - chemistry
2021
The inflammasome is a three-component (sensor, adaptor, and effector) filamentous signaling platform that shields from multiple pathogenic infections by stimulating the proteolytical maturation of proinflammatory cytokines and pyroptotic cell death. The signaling process initiates with the detection of endogenous and/or external danger signals by specific sensors, followed by the nucleation and polymerization from sensor to downstream adaptor and then to the effector, caspase-1. Aberrant activation of inflammasomes promotes autoinflammatory diseases, cancer, neurodegeneration, and cardiometabolic disorders. Therefore, an equitable level of regulation is required to maintain the equilibrium between inflammasome activation and inhibition. Recent advancement in the structural and mechanistic understanding of inflammasome assembly potentiates the emergence of novel therapeutics against inflammasome-regulated diseases. In this review, we have comprehensively discussed the recent and updated insights into the structure of inflammasome components, their activation, interaction, mechanism of regulation, and finally, the formation of densely packed filamentous inflammasome complex that exists as micron-sized punctum in the cells and mediates the immune responses.
Journal Article
The ASC Speck and NLRP3 Inflammasome Function Are Spatially and Temporally Distinct
by
Nagar, Abhinit
,
Harton, Jonathan A.
,
Rahman, Tabassum
in
CARD Signaling Adaptor Proteins
,
Caspase-1
,
Cells, Cultured
2021
Although considered the ternary inflammasome structure, whether the singular, perinuclear NLRP3:ASC speck is synonymous with the NLRP3 inflammasome is unclear. Herein, we report that the NLRP3:ASC speck is not required for nigericin-induced inflammasome activation but facilitates and maximizes IL-1β processing. Furthermore, the NLRP3 agonists H 2 O 2 and MSU elicited IL-1β maturation without inducing specks. Notably, caspase-1 activity is spatially distinct from the speck, occurring at multiple cytoplasmic sites. Additionally, caspase-1 activity negatively regulates speck frequency and speck size, while speck numbers and IL-1β processing are negatively correlated, cyclical and can be uncoupled by NLRP3 mutations or inhibiting microtubule polymerization. Finally, when specks are present, caspase-1 is likely activated after leaving the speck structure. Thus, the speck is not the NLRP3 inflammasome itself, but is instead a dynamic structure which may amplify the NLRP3 response to weak stimuli by facilitating the formation and release of small NLRP3:ASC complexes which in turn activate caspase-1.
Journal Article
Synonymous sites for accessibility around microRNA binding sites in bacterial spot and speck disease resistance genes of tomato
by
Sophiarani, Yengkhom
,
Chakraborty, Supriyo
in
Animal Genetics and Genomics
,
Bacteria
,
bacterial speck
2023
The major causes of mass tomato infections in both covered and open ground are agents of bacterial spot and bacterial speck diseases. MicroRNAs (miRNAs) are 16–21 nucleotides in length, non-coding RNAs that inhibit translation and trigger mRNA degradation. MiRNAs play a significant part in plant resistance to abiotic and biotic stresses by mediating gene regulation
via
post-transcriptional RNA silencing. In this study, we analyzed a collection of bacterial resistance genes of tomato and their binding sites for tomato miRNAs and
Pseudomonas syringe
pv. tomato miRNAs. Our study found that two genes, bacterial spot disease resistance gene (Bs4) and bacterial speck disease resistance gene (Prf), have a 7mer-m8 perfect seed match with miRNAs. Bs4 was targeted by one tomato miRNA (sly-miR9470-3p) and three
Pseudomonas syringe
pv. tomato miRNAs (PSTJ4_3p_27246, PSTJ4_3p_27246, and PSTJ4_3p_27246). Again, Prf gene was found to be targeted by two tomato miRNAs namely, sly-miR9469-5p and sly-miR9474-3p. The accessibility of the miRNA-target site and its flanking regions and the relationship between relative synonymous codon usage and tRNAs were compared. Strong access to miRNA targeting regions and decreased rate of translations suggested that miRNAs might be efficient in binding to their particular targets. We also found the existence of rare codons, which suggests that it could enhance miRNA targeting even more. The codon usage pattern analysis of the two genes revealed that both were AT-rich (Bs4 = 63.2%; Prf = 60.8%). We found a low codon usage bias in both genes, suggesting that selective restriction might regulate them. The silencing property of miRNAs would allow researchers to discover the involvement of plant miRNAs in pathogen invasion. However, the efficient validation of direct targets of miRNAs is an urgent need that might be highly beneficial in enhancing plant resistance to multiple pathogenic diseases.
Journal Article
Bacteriophytochromes from Pseudomonas syringae pv. tomato DC3000 modulate the early stages of plant colonization during bacterial speck disease
by
Moyano, Laura
,
Gärtner, Wolfgang
,
Petrocelli Silvana
in
Apoplast
,
Bacteria
,
Bacterial physiology
2020
Abstra tLiving organisms have evolved the ability to perceive and respond to light of different wavelengths within the visible spectrum by the generation of photoreceptor proteins. Recent studies revealed the participation of these proteins in the virulence of plant pathogenic bacteria. Pseudomonas syringae pv. tomato DC3000 (Pto) is responsible for the bacterial speck, which affects tomato crops. Pto genome contains two genes encoding red/far-red light photoreceptors (BphP1: PSPTO_1902 and BphP2: PSPTO_2652). This work demonstrates the participation of Pto phytochromes and light in the bacterial physiology and during the interaction with tomato plants. We found that Pto phytochromes are implicated in the control of some features related with the bacteria capability to enter into the plant apoplast and cause bacterial speck disease, such as motility, biofilm formation, adhesion and emulsification capability. Red light and bacteriophytochromes are important during the early colonization stage of tomato phyllosphere, affecting Pto virulence. In addition, the development of disease symptoms in infiltrated leaflets is affected by light, which may be the consequence of type-two secretion system regulation.
Journal Article
Inhibition of NLRP3 Inflammasome Activation and Pyroptosis in Macrophages by Taraxasterol Is Associated With Its Regulation on mTOR Signaling
2021
Taraxasterol (TAS) is an active ingredient of Dandelion ( Taraxacum mongolicum Hand. -Mazz.), a medicinal plant that has long been used in China for treatment of inflammatory disorders. But the underlying mechanism for its therapeutic effects on inflammatory disorders is not completely clear. Inflammasome activation is a critical step of innate immune response to infection and aseptic inflammation. Among the various types of inflammasome sensors that has been reported, NLR family pyrin domain containing 3 (NLRP3) is implicated in various inflammatory diseases and therefore has been most extensively studied. In this study, we aimed to explore whether TAS could influence NLPR3 inflammasome activation in macrophages. The results showed that TAS dose-dependently suppressed the activation of caspase-1 in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin treatment, resulting in reduced mature interleukin-1β (IL-1β) release and gasdermin D (GSDMD) cleavage. TAS greatly reduced ASC speck formation upon the stimulation of nigericin or extracellular ATP. Consistent with reduced cleavage of GSDMD, nigericin-induced pyroptosis was alleviated by TAS. Interestingly, TAS time-dependently suppressed the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 signaling induced by LPS priming. Like TAS, both INK-128 (inhibiting both mTORC1 and mTORC2) and rapamycin (inhibiting mTORC1 only) also inhibited NLRP3 inflammasome activation, though their effects on mTOR signaling were different. Moreover, TAS treatment alleviated mitochondrial damage by nigericin and improved mouse survival from bacterial infection, accompanied by reduced IL-1β levels in vivo . Collectively, by inhibiting the NLRP3 inflammasome activation, TAS displayed anti-inflammatory effects likely through regulation of the mTOR signaling in macrophages, highlighting a potential action mechanism for the anti-inflammatory activity of Dandelion in treating inflammation-related disorders, which warrants further clinical investigation.
Journal Article