Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,169 result(s) for "Spectral bands"
Sort by:
Intelligent Selection of Spectral Bands from High-Precision Spectroradiometer Measurements for Optimizing Cocoa Bean Classification
Evaluating the spectral properties of cocoa beans based on their fermentation state (fermented, in a poor state, unfermented) is essential for ensuring their quality in the cocoa industry. This study examined the spectral response of beans in the range of 380 nm to 780 nm using the Konica-Minolta CS-2000 spectrophotometer comes from Dijon, France, a device designed to measure the spectrum of objects and sources in the visible range. Different spectral band selection methods have been applied to identify the most discriminating wavelengths for their classification. Several techniques were used: ANOVA, F-score, Lasso, Linear Discriminant Analysis (LDA), Mutual Information, and Partial Least Squares (PLS). A band selector voting process was implemented to determine standard wavelengths identified using the different methods. The selected spectral bands were then leveraged to train classification models, including Random Forest, SVM, and XGBoost. The results show that a restricted subset of wavelengths allows for effective class separation, thereby improving model performance. Among the approaches tested, ANOVA and F-score combined with Random Forest achieved an accuracy of 92.59%, while F-score and Mutual Information coupled with SVM and voting associated with SVM obtained an accuracy of 96.30%. These feature selection methods have effectively reduced dimensionality while maintaining high classification accuracy. These results open up promising prospects for the automation of quality control of cocoa beans, thus contributing to the optimization of industrial processes.
Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are currently operational for routine Earth observation. There are substantial differences between instruments onboard both satellites. The enhancements achieved with Landsat-8 refer to the scanning technology (replacing of whisk-broom scanners with two separate push-broom OLI and TIRS scanners), an extended number of spectral bands (two additional bands provided) and narrower bandwidths. Therefore, cross-comparative analysis is very necessary for the combined use of multi-decadal Landsat imagery. In this study, 3,311 independent sample points of four major land cover types (primary forest, unplanted cropland, swidden cultivation and water body) were used to compare the spectral bands of ETM+ and OLI. Eight sample plots with different land cover types were manually selected for comparison with the Normalized Difference Vegetation Index (NDVI), the Modified Normalized Difference Water Index (MNDWI), the Land Surface Water Index (LSWI) and the Normalized Burn Ratio (NBR). These indices were calculated with six pairs of ETM+ and OLI cloud-free images, which were acquired over the border area of Myanmar, Laos and Thailand just two days apart, when Landsat-8 achieved operational obit. Comparative results showed that: (1) the average surface reflectance of each band differed slightly, but with a high degree of similarities between both sensors. In comparison with ETM+, the OLI had higher values for the near-infrared band for vegetative land cover types, but lower values for non-vegetative types. The new sensor had lower values for the shortwave infrared (2.11–2.29 µm) band for all land cover types. In addition, it also basically had higher values for the shortwave infrared (1.57–1.65 µm) band for non-water land cover types. (2) The subtle differences of vegetation indices derived from both sensors and their high linear correlation coefficient (R2 > 0.96) demonstrated that ETM+ and OLI imagery can be used as complementary data. (3) LSWI and NBR performed better than NDVI and MNDWI for cross-comparison analysis of satellite sensors, due to the spectral band difference effects.
Potentials of Airborne Hyperspectral AVIRIS-NG Data in the Exploration of Base Metal Deposit—A Study in the Parts of Bhilwara, Rajasthan
In this study, we have processed the spectral bands of airborne hyperspectral data of Advanced Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) data for delineating the surface signatures associated with the base metal mineralization in the Pur-Banera area in the Bhilwara district, Rajasthan, India.The primaryhost rocks of the Cu, Pb, Zn mineralization in the area are Banded Magnetite Quartzite (BMQ), unclassified calcareous silicates, and quartzite. We used ratio images derived from the scale and root mean squares (RMS) error imagesusing the multi-range spectral feature fitting (MRSFF) methodto delineate host rocks from the AVIRIS-NG image. The False Color Composites (FCCs) of different relative band depth images, derived from AVIRIS-NG spectral bands, were also used for delineating few minerals. These minerals areeither associated with the surface alteration resulting from the ore-bearing fluid migration orassociated with the redox-controlled supergene enrichments of the ore deposit.The results show that the AVIRIS-NG image products derived in this study can delineate surface signatures of mineralization in 1:10000 to 1:15000 scales to narrow down the targets for detailed exploration.This study alsoidentified the possible structural control over the knownsurface distribution of alteration and lithocap minerals of base metal mineralizationusing the ground-based residual magnetic anomaly map. This observationstrengthens the importance of the identified surface proxiesas an indicator of mineralization. X-ray fluorescence analysis of samples collectedfromselected locations within the study area confirms the Cu-Pb-Zn enrichment. The sulfide minerals were also identified in the microphotographs of polished sections of rock samples collected from the places where surface proxies of mineralization were observed in the field. This study justified the investigation to utilize surface signatures of mineralization identified using AVIRIS-NG dataand validated using field observations, geophysical, geochemical, and petrographical data.
Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches
Integrating satellite data at different resolutions (i.e., spatial, spectral, and temporal) can be a helpful technique for acquiring soil information from a synoptic point of view. This study aimed to evaluate the advantage of using satellite mono- and multi-sensor image fusion based on either spectral indices or entire spectra to predict the topsoil clay content. To this end, multispectral satellite images acquired by various sensors (i.e., Landsat-5 Thematic Mapper (TM), Landsat-8 Operational Land Imager (OLI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel2-MultiSpectral Instrument (S2-MSI)) have been used to assess their potential in identifying bare soil pixels over an area in northeastern Tunisia, the Lebna and Chiba catchments. A spectral index image and a spectral bands image are generated for each satellite sensor (i.e., TM, OLI, ASTER, and S2-MSI). Then, two multi-sensor satellite image fusions are generated, one from the spectral index images and the other from spectral bands. The resulting spectral index and spectral band images based on mono-and multi-sensor satellites are compared through their spectral patterns and ability to predict the topsoil clay content using the Multilayer Perceptron with backpropagation learning algorithm (MLP-BP) method. The results suggest that for clay content prediction: (i) the spectral bands’ images outperformed the spectral index images regardless of the used satellite sensor; (ii) the fused images derived from the spectral index or bands provided the best performances, with a 10% increase in the prediction accuracy; and (iii) the bare soil images obtained by the fusion of many multispectral sensor satellite images can be more beneficial than using mono-sensor images. Soil maps elaborated via satellite multi-sensor data fusion might become a valuable tool for soil survey, land planning, management, and precision agriculture.
Research on the Characteristic Spectral Band Determination for Water Quality Parameters Retrieval Based on Satellite Hyperspectral Data
Hyperspectral remote sensing technology has been widely used in water quality monitoring. However, while it provides more detailed spectral information for water quality monitoring, it also gives rise to issues such as data redundancy, complex data processing, and low spatial resolution. In this study, a novel approach was proposed to determine the characteristic spectral band of water quality parameters based on satellite hyperspectral data, aiming to improve data utilization of hyperspectral data and to achieve the same precision monitoring of multispectral data. This paper first introduces the data matching method of satellite hyperspectral data and water quality based on space–time information for guidance in collecting research data. Secondly, the customizable and fixed spectral bands of the existing multispectral camera products were studied and used for the preprocessing of hyperspectral data. Then, the determination approach of characteristic spectral bands of water quality parameters is proposed based on the correlation between the reflectance of different bands and regression modeling. Next, the model performance for retrieval of various water quality parameters was compared between the typical empirical method and artificial neural network (ANN) method of different spectral band sets with different band numbers. Finally, taking the adjusted determination coefficient R2¯ as an evaluation index for the models, the results show that the ANN method has obvious advantages over the empirical method, and band set providing more band options improves the model performance. There is an optimal band number for the characteristic spectral bands of water quality parameters. For permanganate index (CODMn), dissolved oxygen (DO), and conductivity (EC), the R2¯ of the optimal ANN model with three bands can reach about 0.68, 0.43, and 0.49, respectively, whose mean absolute percentage error (MAPE) values are 14.02%, 16.26%, and 17.52%, respectively. This paper provides technical guidance for efficient utilization of hyperspectral data by determination of characteristic spectral bands, the theoretical basis for customization of multispectral cameras, and the subsequent water quality monitoring through remote sensing using a multispectral drone.
Informativeness of the Long-Term Average Spectral Characteristics of the Bare Soil Surface for the Detection of Soil Cover Degradation with the Neural Network Filtering of Remote Sensing Data
The long-term spectral characteristics of the bare soil surface (BSS) in the BLUE, GREEN, RED, NIR, SWIR1, and SWIR2 Landsat spectral bands are poorly studied. Most often, the RED and NIR spectral bands are used to analyze the spatial heterogeneity of the soil cover; in our opinion, it is outmoded and seems unreasonable. The study of multi-temporal spectral characteristics requires the processing of big remote sensing data based on artificial intelligence in the form of convolutional neural networks. The analysis of BSS belongs to the direct methods of analysis of the soil cover. Soil degradation can be detected by ground methods (field reconnaissance surveys), modeling, or digital methods, and based on the remote sensing data (RSD) analysis. Ground methods are laborious, and modeling gives indirect results. RSD analysis can be based on the principles of calculation of vegetation indices (VIs) and on the BSS identification. The calculation of VIs also provides indirect information about the soil cover through the state of vegetation. BSS analysis is a direct method for analyzing soil cover heterogeneity. In this work, the informativeness of the long-term (37 years) average spectral characteristics of the BLUE, GREEN, RED, NIR, SWIR1 and SWIR2 bands of the Landsat 4–8 satellites for detecting areas of soil degradation with recognition of the BSS using deep machine learning methods was estimated. The objects of study are the spectral characteristics of kastanozems (dark chestnut soils) in the south of Russia in the territory of the Morozovsky district of the Rostov region. Soil degradation in this area is mainly caused by erosion. The following methods were used: retrospective monitoring of soil and land cover, deep machine learning using convolutional neural networks, and cartographic analysis. Six new maps of the average long-term spectral brightness of the BSS have been obtained. The information content of the BSS for six spectral bands has been verified on the basis of ground surveys. The informativeness was determined by the percentage of coincidences of degradation facts identified during the RSD analysis, and those determined in the field. It has been established that the spectral bands line up in the following descending order of information content: RED, NIR, GREEN, BLUE, SWIR1, SWIR2. The accuracy of degradation maps by band was determined as: RED—84.6%, NIR—82.9%, GREEN—78.0%, BLUE—78.0%, SWIR1—75.5%, SWIR2—62.2%.
Assessment of the Usefulness of Spectral Bands for the Next Generation of Sentinel-2 Satellites by Reconstruction of Missing Bands
The Sentinel-2 constellation has been providing high spatial, spectral and temporal resolution optical imagery of the continental surfaces since 2015. The spatial and temporal resolution improvements that Sentinel-2 brings with respect to previous systems have been demonstrated in both the literature and operational applications. On the other hand, the spectral capabilities of Sentinel-2 appear to have been exploited to a limited extent only. At the moment of definition of the new generation of Sentinel-2 satellites, an assessment of the usefulness of the current available spectral bands seems appropriate. In this work, we investigate the unique information contained by each 20 m resolution Sentinel-2 band. A statistical quantitative approach is adopted in order to yield conclusions that are application agnostic: multivariate regression is used to reconstruct some bands, using the others as predictors. We conclude that, for most observed surfaces, it is possible to reconstruct the reflectances of most red edge or NIR bands from the rest of the observed bands with an accuracy within the radiometric requirements of Sentinel-2. Removing two of those bands could be possible at the cost of slightly higher reconstruction errors. We also identify mission scenarios for which several of the current Sentinel-2 bands could be removed for the next generation of sensors.
Detection of Aphid-Infested Mustard Crop Using Ground Spectroscopy
Timely detection of pest infestation in agricultural crops plays a pivotal role in the planning and execution of pest management interventions. In this study, a ground measured electromagnetic spectrum through hyperspectral sensing (400–2500 nm) was conducted in healthy and aphid-infested mustard crops in different regions of the Bharatpur district of Rajasthan state, India. The ground measured hyperspectral reflectance and its derivatives during the mustard aphid infestation period were used to identify the sensitive spectral regions in the electromagnetic spectrum concerning Aphid Infestation Severity Grade (AISG) to discriminate Lipaphis-infested mustard crops from the healthy ones. Further Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR) were utilized to identify specific spectral bands to differentiate the healthy from aphid-infested crops. The spectral regions of 493–497 nm (blue), 509–515 nm (green), 690–714 nm (red), 717–721 nm (red edge), and 752–756 nm (NIR) showed high correlation with AISG for reflectance, first and second order derivatives. Further analysis of the spectra using PCA and PLSR indicated that spectral bands of 679 nm, 746 nm, and 979 nm had high sensitivity for discriminating aphid-infested crops from the healthy ones. Average reflectance and various spectral indices such as ratio spectral index (RSI), difference spectral index (DSI), and normalized difference spectral index (NDSI) of identified spectral regions and absolute reflectance of identified specific spectral bands were used for predicting AISG. Several regression models, including PCR and PLSR, were examined to predict the AISG. PLSR was found to better predict infestation grade with RMSE of 0.66 and r2 0.71. Our outcomes counseled that hyperspectral reflectance data have the ability to detect aphid-infested severity in mustard.
A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data
Rapid and accurate measurement of high-resolution soil total nitrogen (TN) information can promote variable rate fertilization, protect the environment, and ensure crop yields. Many scholars focus on exploring the rapid TN detection methods and corresponding soil sensors based on spectral technology. However, soil spectra are easily disturbed by many factors, especially soil moisture and particle size. Real-time elimination of the interferences of these factors is necessary to improve the accuracy and efficiency of measuring TN concentration in farmlands. Although, many methods can be used to eliminate soil moisture and particle size effects on the estimation of soil parameters using continuum spectra. However, the discrete NIR spectral band data can be completely different in the band attribution with continuum spectra, that is, it does not have continuity in the sense of spectra. Thus, relevant elimination methods of soil moisture and particle size effects on continuum spectra do not apply to the discrete NIR spectral band data. To solve this problem, in this study, moisture absorption correction index (MACI) and particle size correction index (PSCI) methods were proposed to eliminate the interferences of soil moisture and particle size, respectively. Soil moisture interference was decreased by normalizing the original spectral band data into standard spectral band data, on the basis of the strong soil moisture absorption band at 1450 nm. For the PSCI method, characteristic bands of soil particle size were identified to be 1361 and 1870 nm firstly. Next, normalized index Np, which calculated wavelengths of 1631 and 1870 nm, was proposed to eliminate soil particle size interference on discrete NIR spectral band data. Finally, a new coupled elimination method of soil moisture and particle size interferences on predicting TN concentration through discrete NIR spectral band data was proposed and evaluated. The six discrete spectral bands (1070, 1130, 1245, 1375, 1550, and 1680 nm) used in the on-the-go detector of TN concentration were selected to verify the new method. Field tests showed that the new coupled method had good effects on eliminating interferences of soil moisture and soil particle size.
Leaf Biochemistry Parameters Estimation of Vegetation Using the Appropriate Inversion Strategy
Biochemistry parameters of vegetation are important indicators of the photosynthetic process and provide a substantial amount of data about the status of ecosystems. Estimation of these parameters are greatly affected by the correlations of spectral bands and the sensitivity of each biochemistry parameter to inversion models. Hence, reducing the spectral dimension and inefficient computation process using an appropriate inversion strategy is significant for biochemistry parameters’ estimation. In this work, we used band-selection-based artificial neural networks (ANNs) combined with feature weighting (FW) and principal component analysis (PCA) process to reduce the sensitive spectral correlations and to improve the inversion model predictability for four biochemistry parameters: chlorophyll a and b (Cab), carotenoid (Car), equivalent water thickness (EWT), and leaf mass per area (LMA). We analyzed the model performance by conducting different inversion strategies, including: (1) linking reflectance (R), transmittance (T), and R&T spectral properties in different numbers of band to four biochemistry parameters; (2) simultaneously and then separately inverting them using FW- and PCA-ANNs considering their sensitivity to the ANN model; and (3) choosing a spectral subset from R, T spectrum for EWT, and LMA inversion successively. The results show that: (i) the FW- and PCA-ANN models exhibit efficient improvements by selecting less spectral characteristics; (ii) concurrently inverting EWT and LMA can achieve a satisfactory R 2, while it is inappropriate for Cab and Car whose optimal R 2 are obtained by separately inverting all four biochemicals; (iii) the properties of R, T, and R&T spectra exhibit various performances on parameters inversion.