Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14,739
result(s) for
"Spectrometers"
Sort by:
子午工程二期宽波段太阳射电频谱监测
2024
为实现太阳射电的全波段观测,子午工程二期太阳-行星际监测链分系统将建设4套太阳射电频谱仪,覆盖十米波-米波-分米波-厘米波波段,将为太阳物理和空间天气研究和业务提供可靠的数据支撑. 文中介绍了全波段射电频谱仪的系统构成和主要技术参数,对数据产品和定标过程进行了描述.
Journal Article
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
by
Shakun, A. V.
,
Kuzmin, R. O.
,
Marcq, E.
in
Aerosols
,
Aerospace Technology and Astronautics
,
Astrophysics
2018
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm
−1
. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
Journal Article
Integrated photodetectors for compact Fourier-transform waveguide spectrometers
2023
Extreme miniaturization of infrared spectrometers is critical for their integration into next-generation consumer electronics, wearables and ultrasmall satellites. In the infrared, there is a necessary compromise between high spectral bandwidth and high spectral resolution when miniaturizing dispersive elements, narrow band-pass filters and reconstructive spectrometers. Fourier-transform spectrometers are known for their large bandwidth and high spectral resolution in the infrared; however, they have not been fully miniaturized. Waveguide-based Fourier-transform spectrometers offer a low device footprint, but rely on an external imaging sensor such as bulky and expensive InGaAs cameras. Here we demonstrate a proof-of-concept miniaturized Fourier-transform waveguide spectrometer that incorporates a subwavelength and complementary-metal–oxide–semiconductor-compatible colloidal quantum dot photodetector as a light sensor. The resulting spectrometer exhibits a large spectral bandwidth and moderate spectral resolution of 50 cm−1 at a total active spectrometer volume below 100 μm × 100 μm × 100 μm. This ultracompact spectrometer design allows the integration of optical/analytical measurement instruments into consumer electronics and space devices.A Fourier-transform waveguide spectrometer is demonstrated by using HgTe-quantum-dot-based photoconductors with a spectral response up to a wavelength of 2 μm. The spectral resolution is 50 cm–1. The total active spectrometer volume is below 100 μm × 100 μm × 100 μm.
Journal Article
Emission characteristics of greenhouse gases and air pollutants in a Qinghai-Tibetan Plateau city using a portable Fourier transform spectrometer and TROPOMI observations
2025
Despite the critical need to understand greenhouse gas and air pollutant concentrations and their emissions characteristics in urban and industrial areas, limited assessments have been conducted in the Qinghai-Tibetan Plateau (QTP) cities. Herein, for the first time, we present CO2, CH4 and CO column abundances using a portal Fourier-transform infrared spectrometer (EM27/SUN) in Ganhe Industrial Park (36.546° N, 101.518° E, 2603 m a.s.l.), located in the suburbs of Xining, Qinghai Province, during May–June 2024. Ground-based measurements found to be higher than spaceborne measurements (TROPOMI and IASI) and model forecast (CAMS) across all investigated species, indicating higher local emissions. Notably, significant discrepancies in CO levels are observed, particularly under easterly wind conditions, which transport polluted airmasses from Xining city. To further quantify emissions, we applied a simple dispersion model to the EM27/SUN data and TROPOMI products, estimating an average CO emission rate of 12.3 ± 9.6 and 8.9 ± 7.5 kg s−1, respectively. A wind-assigned anomaly method further applied to the TROPOMI dataset yielded a CO emission rate of 8.5 kg s−1. Additionally, the ground-based observations of ΔXCO / ΔXCO2 ratio exhibits a strong correlation under easterly winds, which suggests an average CO2 emission rate of 550 kg s−1 from Xining city. These findings underscore the utility of portable FTIR spectrometers to enhance our understanding of urban emissions at QTP and demonstrate the potential of combining collaborative ground-based and spaced-based observations to estimate CO2 emissions, particularly in regions with sparse CO2 measurement coverage.
Journal Article
Methane remote sensing and emission quantification of offshore shallow water oil and gas platforms in the Gulf of Mexico
by
Thorpe, Andrew K
,
Ayasse, Alana K
,
Heckler, Joseph
in
Emission measurements
,
Emissions
,
Emitters
2022
Offshore oil and natural gas platforms are responsible for about 30% of global oil and natural gas production. Despite the large share of global production there are few studies that have directly measured atmospheric methane emanating from these platforms. This study maps CH 4 emissions from shallow water offshore oil and gas platforms with an imaging spectrometer by employing a method to capture the sun glint reflection from the water directly surrounding the target areas. We show how remote sensing with imaging spectrometers and glint targeting can be used to efficiently observe offshore infrastructure, quantify methane emissions, and attribute those emissions to specific infrastructure types. In 2021, the Global Airborne Observatory platform, which is an aircraft equipped with a visible shortwave infrared imaging spectrometer, surveyed over 150 offshore platforms and surrounding infrastructure in US federal and state waters in the Gulf of Mexico representing ∼8% of active shallow water infrastructure there. We find that CH 4 emissions from the measured platforms exhibit highly skewed super emitter behavior. We find that these emissions mostly come from tanks and vent booms or stacks. We also find that the persistence and the loss rate from shallow water offshore infrastructure tends to be much higher than for typical onshore production.
Journal Article
A wavelength-scale black phosphorus spectrometer
2021
On-chip spectrometers with compact footprints are being extensively investigated owing to their promising future in critical applications such as sensing, surveillance and spectral imaging. Most existing miniaturized spectrometers use large arrays of photodetection elements to capture different spectral components of incident light, from which its spectrum is reconstructed. Here, we demonstrate a mid-infrared spectrometer in the 2–9 µm spectral range, utilizing a single tunable black phosphorus photodetector with an active area footprint of only 9 × 16 µm2, along with a unique spectral learning procedure. Such a single-detector spectrometer has a compact size at the scale of the operational wavelength. Leveraging the wavelength and bias-dependent responsivity matrix learned from the spectra of a tunable blackbody source, we reconstruct unknown spectra from their corresponding photoresponse vectors. Enabled by the strong Stark effect and the tunable light–matter interactions in black phosphorus, our single-detector spectrometer shows remarkable potential in the reconstruction of the spectra of both monochromatic and broadband light. Furthermore, its ultracompact structure that is free from bulky interferometers and gratings, together with its electrically reconfigurable nature, may open up pathways towards on-chip mid-infrared spectroscopy and spectral imaging.A single-photodetector spectrometer based on black phosphorus is demonstrated in the wavelength range from 2 to 9 μm. The footprint is 9 × 16 μm2. The spectrometer is free from bulky interferometers and gratings, and is electrically reconfigurable.
Journal Article
Broadband ^sup 15^N-^sup 13^C dipolar recoupling via symmetry-based RF pulse schemes at high MAS frequencies
2010
An approach for generating efficient rm RN n ν rm S , ν rm k symmetry-based dual channel RF pulse schemes for γ-encoded broadband ^sup 15^N-^sup 13^C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic \"R\" element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic \"R\" element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by a RF phase and amplitude values. The performance characteristics of the sequences were evaluated via numerical simulations and ^sup 15^N-^sup 13^C chemical shift correlation experiments. Employing such ^sup 13^C-^sup 15^N double-quantum recoupling sequences and the multiple receiver capabilities available in the current generation of NMR spectrometers, the possibility to simultaneously acquire 3D NCC and CNH chemical shift correlation spectra is also demonstrated.[PUBLICATION ABSTRACT]
Journal Article
Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations
by
Thorpe, Andrew K
,
Guha, Abhinav
,
Thompson, David
in
Airborne sensing
,
Airborne wastes
,
Anthropogenic factors
2020
Solid waste management represents one of the largest anthropogenic methane emission sources. However, precise quantification of landfill and composting emissions remains difficult due to variety of site-specific factors that contribute to landfill gas generation and effective capture. Remote sensing is an avenue to quantify process-level emissions from waste management facilities. The California Methane Survey flew the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) over 270 landfills and 166 organic waste facilities repeatedly during 2016-2018 to quantify their contribution to the statewide methane budget. We use representative methane retrievals from this campaign to present three specific findings where remote sensing enabled better landfill and composting methane monitoring: (1) Quantification of strong point source emissions from the active face landfills that are difficult to capture by in situ monitoring or landfill models, (2) emissions that result from changes in landfill infrastructure (design, construction, and operations), and (3) unexpected large emissions from two organic waste management methods (composting and digesting) that were originally intended to help mitigate solid waste emissions. Our results show that remotely-sensed emission estimates reveal processes that are difficult to capture in biogas generation models. Furthermore, we find that airborne remote sensing provides an effective avenue to study the temporally changing dynamics of landfills. This capability will be further improved with future spaceborne imaging spectrometers set to launch in the 2020s.
Journal Article
Widely tunable black phosphorus mid-infrared photodetector
by
Taniguchi, Takashi
,
Chen, Xiaolong
,
Lu, Xiaobo
in
639/301/1005/1007
,
639/925/357/1018
,
639/925/927/1021
2017
Lately rediscovered orthorhombic black phosphorus (BP) exhibits promising properties for near- and mid-infrared optoelectronics. Although recent electrical measurements indicate that a vertical electric field can effectively reduce its transport bandgap, the impact of the electric field on light-matter interaction remains unclear. Here we show that a vertical electric field can dynamically extend the photoresponse in a 5 nm-thick BP photodetector from 3.7 to beyond 7.7 μm, leveraging the Stark effect. We further demonstrate that such a widely tunable BP photodetector exhibits a peak extrinsic photo-responsivity of 518, 30, and 2.2 mA W
−1
at 3.4, 5, and 7.7 μm, respectively, at 77 K. Furthermore, the extracted photo-carrier lifetime indicates a potential operational speed of 1.3 GHz. Our work not only demonstrates the potential of BP as an alternative mid-infrared material with broad optical tunability but also may enable the compact, integrated on-chip high-speed mid-infrared photodetectors, modulators, and spectrometers.
The bandgap of ultrathin black phosphorus can be tuned by a vertical electric field. Here, the authors leverage such electric field to extend the photoresponse of a black phosphorus photodetector to 7.7 μm, opening the doors to various mid-infrared applications.
Journal Article
High-performance and scalable on-chip digital Fourier transform spectroscopy
by
Kita, Derek M.
,
Favela, David
,
Bono, David
in
639/624/1107/527
,
639/766/1130/2799
,
Fourier transform spectrometers
2018
On-chip spectrometers have the potential to offer dramatic size, weight, and power advantages over conventional benchtop instruments for many applications such as spectroscopic sensing, optical network performance monitoring, hyperspectral imaging, and radio-frequency spectrum analysis. Existing on-chip spectrometer designs, however, are limited in spectral channel count and signal-to-noise ratio. Here we demonstrate a transformative on-chip digital Fourier transform spectrometer that acquires high-resolution spectra via time-domain modulation of a reconfigurable Mach-Zehnder interferometer. The device, fabricated and packaged using industry-standard silicon photonics technology, claims the multiplex advantage to dramatically boost the signal-to-noise ratio and unprecedented scalability capable of addressing exponentially increasing numbers of spectral channels. We further explore and implement machine learning regularization techniques to spectrum reconstruction. Using an ‘elastic-D
1
’ regularized regression method that we develop, we achieved significant noise suppression for both broad (>600 GHz) and narrow (<25 GHz) spectral features, as well as spectral resolution enhancement beyond the classical Rayleigh criterion.
On-chip spectrometers typically have limited spectral channels and low signal to noise ratios. Here the authors introduce a digital architecture that uses switches to change the interferometer path lengths, enabling exponentially more spectral channels per circuit element and lower noise by leveraging a machine learning reconstruction algorithm.
Journal Article