Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,154
result(s) for
"Spectrometry, Mass, Electrospray Ionization"
Sort by:
Investigation into mercury bound to biothiols: structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS
2008
Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)₂, Hg(GS)₂, MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants. [graphic removed]
Journal Article
An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets
by
Mahler, Lisa
,
Beulig, Julia R
,
Roth, Martin
in
Antibiotics
,
Bioactive compounds
,
Biological activity
2018
We present a lab-on-a-chip approach for the analysis of secondary metabolites produced in microfluidic droplets by simultaneous epifluorescence microscopy and electrospray ionization mass spectrometry (ESI-MS). The approach includes encapsulation and long-term off-chip incubation of microbes in surfactant-stabilized droplets followed by a transfer of droplets into a microfluidic chip for subsequent analysis. Before the reinjected droplets are spaced and electrosprayed from an integrated emitter into a mass spectrometer, the presence of fluorescent marker molecules is monitored nearly simultaneously with a custom-made portable epifluorescence microscope. This combined fluorescence and MS-detection setup allows the analysis of metabolites and fluorescent labels in a complex biological matrix at a single droplet level. Using hyphae of Streptomyces griseus, encapsulated in microfluidic droplets of ~ 200 picoliter as a model system, we show the detection of in situ produced streptomycin by ESI-MS and the feasibility of detecting fluorophores inside droplets shortly before they are electrosprayed. The presented method expands the analytical toolbox for the discovery of bioactive metabolites such as novel antibiotics, produced by microorganisms.
Journal Article
Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals
2023
Extraction electrospray ionization mass spectrometry (EESI-MS), due to the unique configuration of its ionization module, enables the effective ionization of trace molecules of interest in samples containing complex matrices with high sensitivity, high selectivity and high responding speed without requiring sample pretreatment, and allows high-energy molecular species to undergo specially designed reactions for advanced functionalization. The typical effects of operating conditions on the analytical performance of extraction electrospray ionization mass spectrometry for various pharmaceutical compounds, pharmaceutical preparations and herbal materials were systematically reviewed. The application prospect of extraction electrospray ionization in molecular functionalization for advanced drug discovery is also briefly introduced.
Journal Article
Direct Profiling of Phytochemicals in Tulip Tissues and In Vivo Monitoring of the Change of Carbohydrate Content in Tulip Bulbs by Probe Electrospray Ionization Mass Spectrometry
by
Nonami, Hiroshi
,
Hiraoka, Kenzo
,
Erra-Balsells, Rosa
in
Amino acids
,
Analytical Chemistry
,
Bioinformatics
2009
Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.
Probe electrospray ionization mass spectrometry was applied for direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulb during the first week of growth after dormancy release.
Journal Article
Direct analysis of lateral flow immunoassays for deoxynivalenol using electrospray ionization mass spectrometry
by
Nielen Michel W F
,
Gerssen Arjen
,
Geballa-Koukoula Ariadni
in
Ammonia
,
Cellulose esters
,
Cellulose nitrate
2020
Lateral flow immunoassays (LFIAs) are widely used for rapid food safety screening analysis. Thanks to simplified protocols and smartphone readouts, LFIAs are expected to be increasingly used on-site, even by non-experts. As a typical follow-up in EU regulatory settings, suspect samples are sent to laboratories for confirmatory analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, re-analysis by LC-MS/MS is laborious and time-consuming. In this work, an identification LFIA (ID-LFIA) approach followed by quadrupole-orbitrap MS or triple quadrupole MS/MS analysis is presented. As a proof of concept, a dedicated ID-LFIA strip was developed for the mycotoxin deoxynivalenol (DON) following its initial screening by a commercial smartphone LFIA. The ID-LFIA strip can be simply immersed in the same sample extract used for the smartphone LFIA screening, and next, DON is retrieved from the monoclonal antibody with a dissociation solution consisting of methanol/ammonia. The solution thus obtained was analyzed directly in MS in order to rapidly confirm the presence of DON and any cross-reacting species. The protocol developed is capable of coping with severe ion suppression caused by LFIA buffers and nitrocellulose substrate residues. Initial analysis of blank, spiked, and incurred samples showed that the newly developed ID-LFIA-MS method was able to confirm the presence or absence of mycotoxins in the samples previously analyzed by LFIA and also differentiate between DON and DON 3-glucoside yielding the positive screening result. The concept and technique developed are envisaged to complement on-site screening and confirmation of any low molecular weight contaminant in future food control frameworks.
Journal Article
Lipidomic Analyses in Low and Highly Aggressive Ovarian Cancer Cell Lines
by
Xu, Yan
,
Zhao, Zhenwen
,
Cai, Qingchun
in
animal ovaries
,
Animals
,
Biomedical and Life Sciences
2016
Despite huge advances in the research of epithelial ovarian cancer (EOC), it remains the most lethal gynecological malignancy. Peritoneal tumor cell dissemination with cell survival and drug-resistance to taxane and platinum-based chemotherapy are two of the major challenges of EOC treatment. We have generated highly aggressive EOC cell lines (ID8-P1 lines or P1) from ID8-P0 (without in vivo passage, or P0) through in vivo passage in mice. We conducted lipidomic analyses in cells from ID8-P0 versus three ID8-P1 cell lines using ultra-high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. A total of 16 classes of lipids (149 individual lipids) were analyzed and compared between P0 and P1 cells. In addition to overall lipid profiles in EOC cells, we had several novel observations. Several classes and species of lipids have been identified to be differentially present in P0 versus P1 cells, which are potentially involved in the acquired aggressiveness of P1 cells. Triacylglycerols (TAG) were dramatically increased under detachment stress in EOC cells. Since survival of EOC cells under detachment is one of the major obstacles for EOC treatment, further studies identifying the molecular mechanisms controlling TAG increase may lead to new treatment modalities for EOC.
Journal Article
Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity
2017
The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA) system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC–MS and MS/MS). One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG), digalactosyl diacylglyceride (DGDG), sulfoquinovosyl monoacylglyceride (SQMG), sulfoquinovosyl diacylglyceride (SQDG), the phospholipids phosphatidylcholine (PC), lyso-PC, phosphatidylglycerol (PG), lyso-PG, phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatic acid (PA), inositolphosphoceramide (IPC), and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS). Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50) of 12.2 μg/mL and 12.9 μg/mL, respectively) and inhibited the production of nitric oxide (NO) evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL). These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.
Journal Article
Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS)
by
Beavis, Alison
,
Kirkbride, Paul
,
Morelato, Marie
in
Analytical chemistry
,
Atmospheric pressure
,
Chemical warfare agents (CWAs)
2013
Desorption electrospray ionisation mass spectrometry (DESI-MS) is an emerging analytical technique that enables in situ mass spectrometric analysis of specimens under ambient conditions. It has been successfully applied to a large range of forensically relevant materials. This review assesses and highlights forensic applications of DESI-MS including the analysis and detection of illicit drugs, explosives, chemical warfare agents, inks and documents, fingermarks, gunshot residues and drugs of abuse in urine and plasma specimens. The minimal specimen preparation required for analysis and the sensitivity of detection achieved offer great advantages, especially in the field of forensic science.
Journal Article
Rapid determination of isocitrate dehydrogenase mutation status of human gliomas by extraction nanoelectrospray using a miniature mass spectrometer
by
Xie, Zhuoer
,
Pirro, Valentina
,
Ouyang, Zheng
in
Dehydrogenase
,
Dehydrogenases
,
Genomic analysis
2019
Isocitrate dehydrogenase (IDH) I and II mutations in gliomas cause an abnormal accumulation of 2-hydroxyglutarate (2-HG) in these tumor cells. These mutations have potential prognostic value in that knowledge of the mutation status can lead to improved surgical resection. Information on mutation status obtained by immunohistochemistry or genomic analysis is not available during surgery. We report a rapid extraction nanoelectrospray ionization (nESI) method of determining 2-HG. This should allow the determination of IDH mutation status to be performed intraoperatively, within minutes, using a miniature mass spectrometer. This study demonstrates that the combination of tandem mass spectrometry with low-resolution mass spectrometry allows this analysis to be performed with confidence.
Journal Article
Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography-electrospray tandem mass spectrometry
by
Dinsdale, Richard M
,
Kasprzyk-Hordern, Barbara
,
Guwy, Alan J
in
amphetamine
,
analysis
,
Analytical Chemistry
2008
The main aim of the presented research is to introduce a new technique, ultra performance liquid chromatography-positive/negative electrospray tandem mass spectrometry (UPLC-ESI/MS/MS), for the development of new simultaneous multiresidue methods (over 50 compounds). These methods were used for the determination of multiple classes of pharmaceuticals (acidic, basic and neutral compounds: analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, beta-adrenoceptor blocking drugs, lipid regulating agents, etc.), personal care products (sunscreen agents, preservatives, disinfectant/antiseptics) and illicit drugs (amphetamine, cocaine and benzoylecgonine) in surface water and wastewater. The usage of the novel UPLC system with a 1.7 μm particle-packed column allowed for good resolution of analytes with the utilisation of low mobile phase flow rates (0.05-0.07 mL min⁻¹) and short retention times (method times of up to 25 min), delivering a fast and cost-effective method. SPE with the usage of Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for sample clean-up and concentration. The influence of mobile phase composition, matrix-assisted ion suppression in ESI-MS and SPE recovery on the sensitivity of the method was extensively studied. The method limits of quantification were at low nanogram per litre levels and ranged from tenths of ng L⁻¹ to tens of ng L⁻¹ in surface water and from single ng L⁻¹ to a few hundreds of ng L⁻¹ in the case of wastewater. The instrumental and method intraday and interday repeatabilities were on average less than 5%. The method was successfully applied for the determination of pharmaceuticals in the River Taff (South Wales) and a wastewater treatment plant (WWTP Cilfynydd). Several pharmaceuticals and personal care products were determined in river water at levels ranging from single ng L⁻¹ to single μg L⁻¹.
Journal Article