Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
8,550
result(s) for
"Spice industry"
Sort by:
Insights on the Hypoglycemic Potential of ICrocus sativus/I Tepal Polyphenols: An In Vitro and In Silico Study
2023
Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (−9.5 kcal/mol and −9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (−10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.
Journal Article
ICinnamom verum/I Plantations in the Lowland Tropical Forest of Mexico Are Affected by IPhytophthora cinnamomi/I, Phylogenetically Classified into IPhytophthora/I Subclade 7c
by
Silva-Rojas, Hilda Victoria
,
Espinoza-Pérez, José
,
Mendieta-Moctezuma, Aarón
in
Plantations
,
Spice industry
,
Strategic planning (Business)
2023
Journal Article
Key Microbiota Identification Using Functional Gene Analysis during Pepper
by
Hu, Qisong
,
Zhang, Jiachao
,
Liu, Sixin
in
Biodegradation
,
Genes
,
Microbiota (Symbiotic organisms)
2016
Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry.
Journal Article
Unlocking cinnamon export success: Key determinants from the world's top five producers
by
Dabare, Umesha
,
Marasinghe, Thisalya
,
Kavindya, Nethmi
in
Agricultural societies
,
Agriculture - economics
,
Analysis
2025
The purpose of this research study is to identify the factors affecting cinnamon export income (CEI) in the main five cinnamon export countries, namely China, Sri Lanka, Indonesia, Madagascar and Vietnam for the period from 1992-2022. Secondary data was sourced from the Food and Agriculture Organization and World Bank. Based on the past literature, it has been found out that production volume (PV), domestic consumption (DC), exchange rate (ER) and cultivated land area (CLA) significantly impact on CEI. Simple Linear Regression models were applied to analyse the impact of the identified factors affecting CEI in the present study. The findings revealed, PV negatively impacts the export income of cinnamon in China, Sri Lanka, and Vietnam, while having a positive impact on Indonesia and Madagascar. Moreover, while DC appears to have a positive impact in Sri Lanka, it has a negative impact in China, Vietnam, Indonesia and Madagascar for the same. Accordingly, ER is positive for countries Madagascar, Sri Lanka, and Vietnam while adverse for Indonesia and China. In addition, the study proved that CLA positively influences CEI of China, Vietnam, and Madagascar but negatively for Sri Lanka and Indonesia. Consequently, the findings from this study greatly assist policymakers, exporters, and the industry professionals in executing strategies to enhance the export income & thereof export practices of cinnamon. Finally, this research addresses several gaps in cinnamon export studies, supporting sustainable growth and competitiveness in the sector.
Journal Article
Genome wide identification and characterization of microsatellite markers in black pepper
2019
Black pepper is one of the most valued and widely used spices in the world and dominates multi-billion dollar global spices trade. India is amongst the major producers, consumers and exporters of black pepper. In spite of its commercial and cultural importance, black pepper has received meagre attention in terms of generation of genomic resources. Availability of markers distributed throughout the genome would facilitate and accelerate genetic studies, QTL identification, genetic enhancement and crop improvement in black pepper. In this perspective, the sequence information from the recently sequenced black pepper (Piper nigrum) genome has been used for identification and characterisation of Simple Sequence Repeats (SSRs). Total 69,126 SSRs were identified from assembled genomic sequence of P. nigrum. The SSR frequency was 158 per MB making it, one SSR for every 6.3 kb in the assembled genome. Among the different types of microsatellite repeat motifs, dinucleotides were the most abundant (48.6%), followed by trinucleotide (23.7%) and compound repeats (20.62%). A set of 85 SSRs were used for validation, of which 74 produced amplification products of expected size. Genetic diversity of 30 black pepper accessions using 50 SSRs revealed four distinct clusters. Further, the cross species transferability of the SSRs was checked in nine other Piper species. Out of 50 SSRs used, 19 and 31 SSRs were amplified in nine and seven species, respectively. Thus the identified SSRs may have application in other species of the genus Piper where genome sequence is not available yet. Present study reports the first NGS based genomic SSRs in black pepper and thus constitute a valuable resource for a whole fleet of applications in genetics and plant breeding studies such as genetic map construction, QTL identification, map-based gene cloning, marker-assisted selection and evolutionary studies in Piper nigrum and related species.
Journal Article
Biocontrol Potential of Endophytic Fungi for the Eco-Friendly Management of Root Rot of ICuminum cyminum/I Caused by IFusarium solani/I
by
Ibrahim, Omer H. M
,
Mousa, Magdi A. A
,
Al-Qurashi, Adel D
in
Ammonia
,
Biological control
,
Enzymes
2022
Root rot disease of Cuminum cyminum caused by Fusarium solani is one of the most destructive diseases threatening cumin production. The present study investigates the biocontrol potential of some endophytes against F. solani and their effect on the induction of defense-related enzymes in a greenhouse. The results herein presented illustrate the strong biocontrol potential of three (out of twelve) endophytes. During the in vitro assay, three isolates demonstrated strong mycelial growth inhibition of F. solani: isolates 3, 4, and 9, with 87%, 65%, and 80% reductions, respectively, with respect to the control (100%). These isolates were identified as Trichoderma harzianum, T. longibrachiatum, and Chaetomium globosum, which produce siderophore and indole-3-acetic acid (IAA). Cumin seed priming with the culture filtrates of T. harzianum, C. globosum, and T. longibrachiatum positively affected the seed germination, as a higher germination (%) of culture filtrate-treated seeds was observed followed by infected and healthy control/untreated seeds. In the greenhouse, the application of T. harzianum, T. longibrachiatum, and C. globosum caused a reduction in disease severity (67.7%, 58.1%, and 59.3%, respectively) on cumin plants, with a lower disease severity (20%, 26%, and 25%, respectively) recorded in treated plants compared to the infected control (62%). Furthermore, a significant increase in defense-related enzymes in culture filtrate-treated cumin plants was recorded. Higher peroxidase (PO), polyphenoloxidase (PPO), and phenylalanine ammonia-lyase (PAL) activity, and a higher content of phenolic compounds, were found in culture filtrate-treated plants. These results indicate that the culture filtrates of these bioagents not only increased seed germination, but also protected the plants from F. solani infection by acting as important elements of the cellular antioxidant system in plants upon infection, conferring the biocontrol potential of C. globosum and Trichoderma species toward mitigating the root rot disease of cumin plants in a greenhouse.
Journal Article
Solid-State Fermentation for Phenolic Compounds Recovery from Mexican Oregano
by
Gómez-García, Ricardo
,
Aguilar, Cristóbal N
,
Martínez-Ávila, Guillermo C. G
in
Amino acids
,
Antioxidants
,
Bacteria
2024
The Mexican oregano by-products are a source of bioactive molecules (polyphenols) that could be extracted using solid-state fermentation (SSF). This study fermented the by-products via SSF (120 h) with a lactic acid bacteria (LAB) Leuconostoc mesenteroides. Sequentially, a bioactive and chemical determination was made according to the phenolic content, antioxidant activity (DPPH[sup.●]/FRAP), bioactive properties (α-amylase inhibition and antimicrobial activity against Escherichia coli), and chemical composition (HPLC-MS). The results showed that the total phenolics and flavonoid content, as well as the antioxidant activity, increased (0.60, 2.55, and 3.01 times, respectively) during the SSF process compared with unfermented material. Also, the extracts showed antimicrobial activity against E. coli and α-amylase inhibition. These inhibitory results could be attributed to bioactive compounds identified via HPLC, such as gardenin B, trachelogenin, ferulic acid, and resveratrol 3-O-glucoside. Therefore, the application of L. mesenteroides under SSF on oregano by-products comprises an eco-friendly strategy for their valorization as raw materials for the recovery of phenolic compounds that could be natural alternatives against synthetic antioxidant and antimicrobial agents, promoting a more circular and sustainable supply system within the oregano industry.
Journal Article
Revealing the dynamics of saffron growth: Optimizing corm size and planting depth for increased yield synergies
by
Anwar, Tauseef
,
Khalid, Faizan
,
Alhammad, Bushra Ahmed
in
Agriculture - methods
,
Analysis
,
Biology and Life Sciences
2024
Saffron, the \"golden spice\" derived from Crocus sativus L., is renowned for its richness in secondary metabolites such as crocin and safranal, contributing to its unique properties. Facing challenges like decreasing global production, optimizing cultivation techniques becomes imperative for enhanced yields. Although the impact of factors like planting density, planting depth, spacing, and corm size on saffron growth has been studied, the interaction between corm size and planting depth remains underexplored. This study systematically investigates the interactive effects of corm size and planting depth on saffron growth and yield, providing evidence-based guidelines for optimizing cultivation. A factorial experiment, employing a completely randomized design, was conducted to assess the influence of corm size (05-10g, 10.1-15g, 15.1-20g) and planting depth (10cm, 15cm, 20cm) on saffron yield. Uniform-sized corms were obtained, and a suitable soil mixture was prepared for cultivation. Morphological and agronomic parameters were measured, and statistical analyses were performed using ANOVA and Tukey’s HSD test. The study revealed that planting depth significantly affected saffron emergence. The corms sown under 15cm depth showed 100% emergence regardless of corm size (either 05-10g, 10.1-15g, 15.1-20g) followed by 10cm depth corms. Corm dry weight exhibited a complex interaction, where larger corms benefited from deeper planting, while intermediate-sized corms thrived at shallower depths. Similar patterns were observed in shoot fresh weight and dry weight. Specifically, the largest corm size (t3, 15.1-20g) produced the greatest fresh-weight biomass at the deepest planting depth of 20cm (T3), while intermediate-sized corms (t2, 10.1-15g) were superior at the shallowest 10cm depth (T1). The total plant biomass demonstrated that larger corms excelled in deeper planting, while intermediate-sized corms were optimal at moderate depths. This research highlights the intricate interplay between corm size and planting depth in influencing saffron growth. Larger corms generally promote higher biomass, but the interaction with planting depth is crucial. Understanding these dynamics can aid farmers in tailoring cultivation practices for optimal saffron yields. The study emphasizes the need for a coordinated approach to corm selection and depth placement, providing valuable insights for sustainable saffron production and economic growth.
Journal Article