Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,977
result(s) for
"Spikelets"
Sort by:
Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice
by
Yang, Jianchang
,
Zhang, Jianhua
,
Wang, Zhiqin
in
1,4-alpha-glucan branching enzyme
,
1,4-alpha-Glucan Branching Enzyme - metabolism
,
abscisic acid
2012
This study tested the hypothesis that a post-anthesis moderate soil drying can improve grain filling through regulating the key enzymes in the sucrose-to-starch pathway in the grains of rice (Oryza sativaL.). Two rice cultivars were field grown and two irrigation regimes, alternate wetting and moderate soil drying (WMD) and conventional irrigation (CI, continuously flooded), were imposed during the grain-filling period. The grain-filling rate and activities of four key enzymes in sucrose-to-starch conversion, sucrose synthase (SuSase), adenosine diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE), showed no significant difference between WMD and CI regimes for the earlier flowering superior spikelets. However, they were significantly enhanced by the WMD for the later flowering inferior spikelets. The activities of both soluble and insoluble acid invertase in the grains were little affected by the WMD. The two cultivars showed the same tendencies. The activities of SuSase, AGPase, StSase, and SBE in grains were very significantly correlated with the grain-filling rate. The abscisic acid (ABA) concentration in inferior spikelets was remarkably increased in the WMD and very significantly correlated with activities of SuSase, AGPase, StSase, and SBE. Application of ABA on plants under CI produced similar results to those seen in plants receiving WMD. Applying fluridone, an indirect inhibitor of ABA synthesis, produced the opposite effect. The results suggest that post-anthesis WMD could enhance sink strength by regulating the key enzymes involved, and consequently, increase the grain-filling rate and grain weight of inferior spikelets. ABA plays an important role in this process.
Journal Article
Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets
by
Yang, Jianchang
,
Zhang, Jianhua
,
Peng, Xinxiang
in
Abscisic Acid - metabolism
,
Amino Acid Oxidoreductases - metabolism
,
Biological and medical sciences
2011
Later-flowering spikelets in a rice panicle, referred to as the inferior spikelets, are usually poorly filled and often limit the yield potential of some rice cultivars. The physiological and molecular mechanism for such poor grain filling remains unclear. In this study the differentially expressed genes in starch synthesis and hormone signalling between inferior and superior spikelets were comprehensively analysed and their relationships with grain filling was investigated. DNA microarray and real-time PCR analysis revealed that a group of starch metabolism-related genes showed enhanced expression profiles and had higher transcript levels in superior spikelets than in inferior ones at the early and middle grain-filling stages. Expression of the abscisic acid (ABA) synthesis genes, 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED5, and the ethylene synthesis genes, 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1) and ACO3, declined with development of the caryopses. Meanwhile, if compared with inferior spikelets, expression of these genes in superior spikelets decreased faster and had lower transcript profiles, especially for ethylene. ABA concentration and ethylene evolution rate showed similar trends to their gene expression. Exogenous supply of ABA reduced the sucrose synthase (SUS) mRNA level and its enzyme activity in detached rice grains, while exogenously supplied ethephon (an ethylene-releasing reagent) suppressed the expression of most starch synthesis genes; that is, SUS, ADP-glucose pyrophosphorylase (AGPase), and soluble starch synthase (SSS), and down-regulated their enzyme activities. In summary, it is concluded that the relatively high concentrations of ethylene and ABA in inferior spikelets suppress the expression of starch synthesis genes and their enzyme activities and consequently lead to a low grain-filling rate.
Journal Article
Multifloret spikelet improves rice yield
2020
The typical rice (Oryza sativa) spikelet contains a single fertile floret and produces only one grain; by contrast, Brachypodium distachyon spikelets contain multiple fertile florets and produce several grains. To increase yield, rice breeders have traditionally focused on panicle morphology (branch number and length, spikelet density), but have not considered the number of florets in each spikelet. Production of rice spikelets with more florets could further increase the number of grains per panicle. Here, we describe two novel approaches– altering meristem determinacy and restoring lateral floret formation – for breeding rice cultivars with a multifloret spikelet, thereby increasing the number of grains per panicle and potentially improving yield.
Journal Article
Wheat FRIZZY PANICLE activates VERNALIZATION1‐A and HOMEOBOX4‐A to regulate spike development in wheat
2021
Summary Kernel number per spike determined by the spike or inflorescence development is one important agricultural trait for wheat yield that is critical for global food security. While a few important genes for wheat spike development were identified, the genetic regulatory mechanism underlying supernumerary spikelets (SSs) is still unclear. Here, we cloned the wheat FRIZZY PANICLE (WFZP) gene from one local wheat cultivar. WFZP is specifically expressed at the sites where the spikelet meristem and floral meristem are initiated, which differs from the expression patterns of its homologs FZP/BD1 in rice and maize, indicative of its functional divergence during species differentiation. Moreover, WFZP directly activates VERNALIZATION1 (VRN1) and wheat HOMEOBOX4 (TaHOX4) to regulate the initiation and development of spikelet. The haplotypes analysis showed that the favourable alleles of WFZP associated with spikelet number per spike (SNS) were preferentially selected during breeding. Our findings provide insights into the molecular and genetic mechanisms underlying wheat spike development and characterize the WFZP as elite resource for wheat molecular breeding with enhanced crop yield.
Journal Article
FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat
2021
Grain yield in bread wheat (Triticum aestivum L.) is largely determined by inflorescence architecture. Zang734 is an endemic Tibetan wheat variety that exhibits a rare triple spikelet (TRS) phenotype with significantly increased spikelet/floret number per spike. However, the molecular basis underlying this specific spike morphology is completely unknown.
Through map-based cloning, the causal genes for TRS trait in Zang734 were isolated. Furthermore, using CRISPR/Cas9-based gene mutation, transcriptome sequencing and protein–protein interaction, the downstream signalling networks related to spikelet formation and awn elongation were defined.
Results showed that the null mutation in WFZP-A together with deletion of WFZP-D led to the TRS trait in Zang734. More interestingly, WFZP plays a dual role in simultaneously repressing spikelet formation gene TaBA1 and activating awn development genes, basically through the recruitments of chromatin remodelling elements and the Mediator complex.
Our findings provide insights into the molecular bases by which WFZP suppresses spikelet formation but promotes awn elongation and, more importantly, define WFZP-D as a favourable gene for high-yield crop breeding.
Journal Article
Of floral fortune
2020
Enhancing the yield potential and stability of small-grain cereals, such aswheat (Triticum sp.), rice (Oryza sativa), and barley (Hordeum vulgare), is a priority for global food security. Over the last several decades, plant breeders have increased grain yield mainly by increasing the number of grains produced in each inflorescence. This trait is determined by the number of spikelets per spike and the number of fertile florets per spikelet. Recent genetic and genomic advances in cereal grass species have identified the molecular determinants of grain number and facilitated the exchange of information across genera. In this review, we focus on the genetic basis of inflorescence architecture in Triticeae crops, highlighting recent insights that have helped to improve grain yield by, for example, reducing the preprogrammed abortion of floral organs. The accumulating information on inflorescence development can be harnessed to enhance grain yield by comparative trait reconstruction and rational design to boost the yield potential of grain crops.
Journal Article
OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes
2018
A new rice gene, OsMFT1, was identified that both regulates rice heading date and panicle architecture and is different from its homologs in other species.
Abstract
Heading date and panicle architecture are important agronomic traits in rice. Here, we identified a gene MOTHER OF FT AND TFL1 (OsMFT1) that regulates rice heading and panicle architecture. Overexpressing OsMFT1 delayed heading date by over 7 d and greatly increased spikelets per panicle and the number of branches. In contrast, OsMFT1 knockout mutants had an advanced heading date and reduced spikelets per panicle. Overexpression of OsMFT1 significantly suppressed Ehd1 expression, and Ghd7 up-regulated OsMFT1 expression. Double mutants showed that OsMFT1 acted downstream of Ghd7. In addition, transcription factor OsLFL1 was verified to directly bind to the promoter of OsMFT1 via an RY motif and activate the expression of OsMFT1 in vivo and in vitro. RNA-seq and RNA in situ hybridization analysis confirmed that OsMFT1 repressed expression of FZP and five SEPALLATA-like genes, indicating that the transition from branch meristem to spikelet meristem was delayed and thus more panicle branches were produced. Therefore, OsMFT1 is a suppressor of flowering acting downstream of Ghd7 and upstream of Ehd1, and a positive regulator of panicle architecture.
Journal Article
The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development
2013
In order to understand the molecular genetic mechanisms of rice (Oryza sativa) organ development, we studied the narrow leaf2 narrow leaf3 (nal2 nal3; hereafter nal2/3) double mutant, which produces narrow-curly leaves, more tillers, fewer lateral roots, opened spikelets and narrow-thin grains.
We found that narrow-curly leaves resulted mainly from reduced lateral-axis outgrowth with fewer longitudinal veins and more, larger bulliform cells. Opened spikelets, possibly caused by marginal deformity in the lemma, gave rise to narrow-thin grains.
Map-based cloning revealed that NAL2 and NAL3 are paralogs that encode an identical OsWOX3A (OsNS) transcriptional activator, homologous to NARROW SHEATH1 (NS1) and NS2 in maize and PRESSED FLOWER in Arabidopsis. OsWOX3A is expressed in the vascular tissues of various organs, where nal2/3 mutant phenotypes were displayed. Expression levels of several leaf development-associated genes were altered in nal2/3, and auxin transportrelated genes were significantly changed, leading to pin mutant-like phenotypes such as more tillers and fewer lateral roots.
OsWOX3A is involved in organ development in rice, lateral-axis outgrowth and vascular patterning in leaves, lemma and palea morphogenesis in spikelets, and development of tillers and lateral roots.
Journal Article
A single nucleotide deletion in the third exon of FT‐D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.)
2022
Summary The spikelet number and heading date are two crucial and correlated traits for yield in wheat. Here, a quantitative trait locus (QTL) analysis was conducted in F8 recombinant inbred lines (RILs) derived from crossing two common wheats with different spikelet numbers. A total of 15 stable QTL influencing total spikelet number (TSN) and heading date (HD) were detected. Notably, FT‐D1, a well‐known flowering time gene in wheat, was located within the finely mapped interval of a major QTL on 7DS (QTsn/Hd.cau‐7D). A causal indel of one G in the third exon of FT‐D1 was significantly associated with total spikelet number and heading date. Consistently, CRISPR/Cas9 mutant lines with homozygous mutations in FT‐D1 displayed an increase in total spikelet number and heading date when compared with wild type. Moreover, one simple and robust marker developed according to the polymorphic site of FT‐D1 revealed that this one G indel had been preferentially selected to adapt to different environments. Collectively, these data provide further insights into the genetic basis of spikelet number and heading date, and the diagnostic marker of FT‐D1 will be useful for marker‐assisted pyramiding in wheat breeding.
Journal Article