Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
67
result(s) for
"Spinal Muscular Atrophies of Childhood/drug therapy/therapy"
Sort by:
Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial
2021
Spinal muscular atrophy is a rare, autosomal recessive, neuromuscular disease caused by biallelic loss of the survival motor neuron 1 (SMN1) gene, resulting in motor neuron dysfunction. In this STR1VE-EU study, we aimed to evaluate the safety and efficacy of onasemnogene abeparvovec gene replacement therapy in infants with spinal muscular atrophy type 1, using broader eligibility criteria than those used in STR1VE-US.
STR1VE-EU was a multicentre, single-arm, single-dose, open-label phase 3 trial done at nine sites (hospitals and universities) in Italy (n=4), the UK (n=2), Belgium (n=2), and France (n=1). We enrolled patients younger than 6 months (180 days) with spinal muscular atrophy type 1 and the common biallelic pathogenic SMN1 exon 7–8 deletion or point mutations, and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes [vg]/kg). The outpatient follow-up consisted of assessments once per week starting at day 7 post-infusion for 4 weeks and then once per month until the end of the study (at age 18 months or early termination). The primary outcome was independent sitting for at least 10 s, as defined by the WHO Multicentre Growth Reference Study, at any visit up to the 18 months of age study visit, measured in the intention-to-treat population. Efficacy was compared with the Pediatric Neuromuscular Clinical Research (PNCR) natural history cohort. This trial is registered with ClinicalTrials.gov, NCT03461289 (completed).
From Aug 16, 2018, to Sept 11, 2020, 41 patients with spinal muscular atrophy were assessed for eligibility. The median age at onasemnogene abeparvovec dosing was 4·1 months (IQR 3·0–5·2). 32 (97%) of 33 patients completed the study and were included in the ITT population (one patient was excluded despite completing the study because of dosing at 181 days). 14 (44%, 97·5% CI 26–100) of 32 patients achieved the primary endpoint of functional independent sitting for at least 10 s at any visit up to the 18 months of age study visit (vs 0 of 23 untreated patients in the PNCR cohort; p<0·0001). 31 (97%, 95% CI 91–100) of 32 patients in the ITT population survived free from permanent ventilatory support at 14 months compared with six (26%, 8–44) of 23 patients in the PNCR natural history cohort (p<0·0001). 32 (97%) of 33 patients had at least one adverse event and six (18%) had adverse events that were considered serious and related to onasemnogene abeparvovec. The most common adverse events were pyrexia (22 [67%] of 33), upper respiratory infection (11 [33%]), and increased alanine aminotransferase (nine [27%]). One death, unrelated to the study drug, occurred from hypoxic-ischaemic brain damage because of a respiratory tract infection during the study.
STR1VE-EU showed efficacy of onasemnogene abeparvovec in infants with symptomatic spinal muscular atrophy type 1. No new safety signals were identified, but further studies are needed to show long-term safety. The benefit–risk profile of onasemnogene abeparvovec seems favourable for this patient population, including those with severe disease at baseline.
Novartis Gene Therapies.
Journal Article
Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy
by
Zhong, Z. John
,
Chiriboga, Claudia A
,
Saito, Kayoko
in
Age of Onset
,
Antisense oligonucleotides
,
Babies
2017
In this phase 3 trial, among infants with spinal muscular atrophy, those who received nusinersen were more likely to achieve major motor milestones and less likely to need permanent assisted ventilation than those who underwent a sham procedure.
Journal Article
Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy
by
Chiriboga, Claudia A
,
Foster, Richard
,
Day, John W
in
Age of Onset
,
Antisense oligonucleotides
,
backache
2018
In this phase 3 trial, among children with later-onset spinal muscular atrophy, those who received nusinersen had improvement in motor-function scores and those who underwent a sham procedure did not.
Journal Article
Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial
by
Tauscher-Wisniewski, Sitra
,
Zaidman, Craig M.
,
Strauss, Kevin A.
in
631/208/135
,
631/208/2489/201
,
Atrophy
2022
SPR1NT (
NCT03505099
) was a Phase III, multicenter, single-arm study to investigate the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic
SMN1
mutations treated at ≤6 weeks of life. Here, we report final results for 14 children with two copies of
SMN2
, expected to develop spinal muscular atrophy (SMA) type 1. Efficacy was compared with a matched Pediatric Neuromuscular Clinical Research natural-history cohort (
n
= 23). All 14 enrolled infants sat independently for ≥30 seconds at any visit ≤18 months (Bayley-III item #26;
P
< 0.001; 11 within the normal developmental window). All survived without permanent ventilation at 14 months as per protocol; 13 maintained body weight (≥3rd WHO percentile) through 18 months. No child used nutritional or respiratory support. No serious adverse events were considered related to treatment by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for children expected to develop SMA type 1, highlighting the urgency for universal newborn screening.
For presymptomatic infants at risk for SMA type 1, onasemnogene abeparvovec improves motor outcomes, ventilator-free survival, and nutritional/respiratory independence compared with untreated or treated symptomatic patients
Journal Article
Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA)
by
Mazzone, Elena S.
,
Baranello, Giovanni
,
Deconinck, Nicolas
in
Atrophy
,
Azo Compounds
,
Azo Compounds - adverse effects
2023
Risdiplam is an oral, survival of motor neuron 2 (
SMN2
) pre-mRNA splicing modifier approved for the treatment of spinal muscular atrophy (SMA). SUNFISH (NCT02908685) Part 2, a Phase 3, randomized, double-blind, placebo-controlled study, investigated the efficacy and safety of risdiplam in type 2 and non‑ambulant type 3 SMA. The primary endpoint was met: a significantly greater change from baseline in 32-item Motor Function Measure (MFM32) total score was observed with risdiplam compared with placebo at month 12. After 12 months, all participants received risdiplam while preserving initial treatment blinding. We report 24-month efficacy and safety results in this population. Month 24 exploratory endpoints included change from baseline in MFM32 and safety. MFM‑derived results were compared with an external comparator. At month 24 of risdiplam treatment, 32% of patients demonstrated improvement (a change of ≥ 3) from baseline in MFM32 total score; 58% showed stabilization (a change of ≥ 0). Compared with an external comparator, a treatment difference of 3.12 (95% confidence interval [CI] 1.67–4.57) in favor of risdiplam was observed in MFM-derived scores. Overall, gains in motor function at month 12 were maintained or improved upon at month 24. In patients initially receiving placebo, MFM32 remained stable compared with baseline (0.31 [95% CI – 0.65 to 1.28]) after 12 months of risdiplam; 16% of patients improved their score and 59% exhibited stabilization. The safety profile after 24 months was consistent with that observed after 12 months. Risdiplam over 24 months resulted in further improvement or stabilization in motor function, confirming the benefit of longer-term treatment.
Journal Article
Risdiplam in Type 1 Spinal Muscular Atrophy
by
Baranello, Giovanni
,
Masson, Riccardo
,
Deconinck, Nicolas
in
Administration, Oral
,
Adverse events
,
Atrophy
2021
The small molecule risdiplam increased the expression of SMN protein in blood in 21 infants with type 1 spinal muscular atrophy. Post hoc clinical features of sitting ability and respiratory status were reported.
Journal Article
Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study
by
Vajsar, Jiri
,
Hung, Gene
,
Chiriboga, Claudia A
in
Clinical trials
,
Drug dosages
,
Drug therapy
2016
Nusinersen is a 2′-O-methoxyethyl phosphorothioate-modified antisense drug being developed to treat spinal muscular atrophy. Nusinersen is specifically designed to alter splicing of SMN2 pre-mRNA and thus increase the amount of functional survival motor neuron (SMN) protein that is deficient in patients with spinal muscular atrophy.
This open-label, phase 2, escalating dose clinical study assessed the safety and tolerability, pharmacokinetics, and clinical efficacy of multiple intrathecal doses of nusinersen (6 mg and 12 mg dose equivalents) in patients with infantile-onset spinal muscular atrophy. Eligible participants were of either gender aged between 3 weeks and 7 months old with onset of spinal muscular atrophy symptoms between 3 weeks and 6 months, who had SMN1 homozygous gene deletion or mutation. Safety assessments included adverse events, physical and neurological examinations, vital signs, clinical laboratory tests, cerebrospinal fluid laboratory tests, and electrocardiographs. Clinical efficacy assessments included event free survival, and change from baseline of two assessments of motor function: the motor milestones portion of the Hammersmith Infant Neurological Exam—Part 2 (HINE-2) and the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND) motor function test, and compound motor action potentials. Autopsy tissue was analysed for target engagement, drug concentrations, and pharmacological activity. HINE-2, CHOP-INTEND, and compound motor action potential were compared between baseline and last visit using the Wilcoxon signed-rank test. Age at death or permanent ventilation was compared with natural history using the log-rank test. The study is registered at ClinicalTrials.gov, number NCT01839656.
20 participants were enrolled between May 3, 2013, and July 9, 2014, and assessed through to an interim analysis done on Jan 26, 2016. All participants experienced adverse events, with 77 serious adverse events reported in 16 participants, all considered by study investigators not related or unlikely related to the study drug. In the 12 mg dose group, incremental achievements of motor milestones (p<0·0001), improvements in CHOP-INTEND motor function scores (p=0·0013), and increased compound muscle action potential amplitude of the ulnar nerve (p=0·0103) and peroneal nerve (p<0·0001), compared with baseline, were observed. Median age at death or permanent ventilation was not reached and the Kaplan-Meier survival curve diverged from a published natural history case series (p=0·0014). Analysis of autopsy tissue from patients exposed to nusinersen showed drug uptake into motor neurons throughout the spinal cord and neurons and other cell types in the brainstem and other brain regions, exposure at therapeutic concentrations, and increased SMN2 mRNA exon 7 inclusion and SMN protein concentrations in the spinal cord.
Administration of multiple intrathecal doses of nusinersen showed acceptable safety and tolerability, pharmacology consistent with its intended mechanism of action, and encouraging clinical efficacy. Results informed the design of an ongoing, sham-controlled, phase 3 clinical study of nusinersen in infantile-onset spinal muscular atrophy.
Ionis Pharmaceuticals, Inc and Biogen.
Journal Article
Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial
by
Tauscher-Wisniewski, Sitra
,
Mendell, Jerry R
,
Crawford, Thomas O
in
Adverse events
,
Atrophy
,
Biological Products - therapeutic use
2021
Spinal muscular atrophy type 1 is a motor neuron disorder resulting in death or the need for permanent ventilation by age 2 years. We aimed to evaluate the safety and efficacy of onasemnogene abeparvovec (previously known as AVXS-101), a gene therapy delivering the survival motor neuron gene (SMN), in symptomatic patients (identified through clinical examination) with infantile-onset spinal muscular atrophy.
STR1VE was an open-label, single-arm, single-dose, phase 3 trial done at 12 hospitals and universities in the USA. Eligible patients had to be younger than 6 months and have spinal muscular atrophy with biallelic SMN1 mutations (deletion or point mutations) and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes per kg) for 30–60 min. During the outpatient follow-up, patients were assessed once per week, beginning at day 7 post-infusion for 4 weeks and then once per month until the end of the study (age 18 months or early termination). Coprimary efficacy outcomes were independent sitting for 30 s or longer (Bayley-III item 26) at the 18 month of age study visit and survival (absence of death or permanent ventilation) at age 14 months. Safety was assessed through evaluation of adverse events, concomitant medication usage, physical examinations, vital sign assessments, cardiac assessments, and laboratory evaluation. Primary efficacy endpoints for the intention-to-treat population were compared with untreated infants aged 6 months or younger (n=23) with spinal muscular atrophy type 1 (biallelic deletion of SMN1 and two copies of SMN2) from the Pediatric Neuromuscular Clinical Research (PNCR) dataset. This trial is registered with ClinicalTrials.gov, NCT03306277 (completed).
From Oct 24, 2017, to Nov 12, 2019, 22 patients with spinal muscular atrophy type 1 were eligible and received onasemnogene abeparvovec. 13 (59%, 97·5% CI 36–100) of 22 patients achieved functional independent sitting for 30 s or longer at the 18 month of age study visit (vs 0 of 23 patients in the untreated PNCR cohort; p<0·0001). 20 patients (91%, 79–100]) survived free from permanent ventilation at age 14 months (vs 6 [26%], 8–44; p<0·0001 in the untreated PNCR cohort). All patients who received onasemnogene abeparvovec had at least one adverse event (most common was pyrexia). The most frequently reported serious adverse events were bronchiolitis, pneumonia, respiratory distress, and respiratory syncytial virus bronchiolitis. Three serious adverse events were related or possibly related to the treatment (two patients had elevated hepatic aminotransferases, and one had hydrocephalus).
Results from this multicentre trial build on findings from the phase 1 START study by showing safety and efficacy of commercial grade onasemnogene abeparvovec. Onasemnogene abeparvovec showed statistical superiority and clinically meaningful responses when compared with observations from the PNCR natural history cohort. The favourable benefit–risk profile shown in this study supports the use of onasemnogene abeparvovec for treatment of symptomatic patients with genetic or clinical characteristics predictive of infantile-onset spinal muscular atrophy type 1.
Novartis Gene Therapies.
Journal Article
Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls
by
Masson, Riccardo
,
Baranello, Giovanni
,
Bruno, Claudio
in
Adverse events
,
Azo Compounds/adverse effects/therapeutic use
,
Babies
2021
The pre-mRNA
SMN2
splicing modifier risdiplam was administered orally to 41 infants with type 1 spinal muscular atrophy. After 12 months of treatment, 12 infants were able to sit without support, and most had better scores on motor-performance scales than the upper limit of confidence intervals from historical controls.
Journal Article
Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial
2022
Risdiplam is an oral small molecule approved for the treatment of patients with spinal muscular atrophy, with approval for use in patients with type 2 and type 3 spinal muscular atrophy granted on the basis of unpublished data. The drug modifies pre-mRNA splicing of the SMN2 gene to increase production of functional SMN. We aimed to investigate the safety and efficacy of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy.
In this phase 3, randomised, double-blind, placebo-controlled study, patients aged 2–25 years with confirmed 5q autosomal recessive type 2 or type 3 spinal muscular atrophy were recruited from 42 hospitals in 14 countries across Europe, North America, South America, and Asia. Participants were eligible if they were non-ambulant, could sit independently, and had a score of at least 2 in entry item A of the Revised Upper Limb Module. Patients were stratified by age and randomly assigned (2:1) to receive either daily oral risdiplam, at a dose of 5·00 mg (for individuals weighing ≥20 kg) or 0·25 mg/kg (for individuals weighing <20 kg), or daily oral placebo (matched to risdiplam in colour and taste). Randomisation was conducted by permutated block randomisation with a computerised system run by an external party. Patients, investigators, and all individuals in direct contact with patients were masked to treatment assignment. The primary endpoint was the change from baseline in the 32-item Motor Function Measure total score at month 12. All individuals who were randomly assigned to risdiplam or placebo, and who did not meet the prespecified missing item criteria for exclusion, were included in the primary efficacy analysis. Individuals who received at least one dose of risdiplam or placebo were included in the safety analysis. SUNFISH is registered with ClinicalTrials.gov, NCT02908685. Recruitment is closed; the study is ongoing.
Between Oct 9, 2017, and Sept 4, 2018, 180 patients were randomly assigned to receive risdiplam (n=120) or placebo (n=60). For analysis of the primary endpoint, 115 patients from the risdiplam group and 59 patients from the placebo group were included. At month 12, the least squares mean change from baseline in 32-item Motor Function Measure was 1·36 (95% CI 0·61 to 2·11) in the risdiplam group and –0·19 (–1·22 to 0·84) in the placebo group, with a treatment difference of 1·55 (0·30 to 2·81, p=0·016) in favour of risdiplam. 120 patients who received risdiplam and 60 who received placebo were included in safety analyses. Adverse events that were reported in at least 5% more patients who received risdiplam than those who received placebo were pyrexia (25 [21%] of 120 patients who received risdiplam vs ten [17%] of 60 patients who received placebo), diarrhoea (20 [17%] vs five [8%]), rash (20 [17%] vs one [2%]), mouth and aphthous ulcers (eight [7%] vs 0), urinary tract infection (eight [7%] vs 0), and arthralgias (six [5%] vs 0). The incidence of serious adverse events was similar between treatment groups (24 [20%] of 120 patients in the risdiplam group; 11 [18%] of 60 patients in the placebo group), with the exception of pneumonia (nine [8%] in the risdiplam group; one [2%] in the placebo group).
Risdiplam resulted in a significant improvement in motor function compared with placebo in patients aged 2–25 years with type 2 or non-ambulant type 3 spinal muscular atrophy. Our exploratory subgroup analyses showed that motor function was generally improved in younger individuals and stabilised in older individuals, which requires confirmation in further studies. SUNFISH part 2 is ongoing and will provide additional evidence regarding the long-term safety and efficacy of risdiplam.
F Hoffmann-La Roche.
Journal Article