Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14,197
result(s) for
"Spleen - immunology"
Sort by:
Anti-inflammatory role of APRIL by modulating regulatory B cells in antigen-induced arthritis
by
Villa-Verde, Déa Maria Serra
,
Carvalho-Santos, Adriana
,
Ballard Kuhnert, Lia Rafaella
in
Analysis
,
Animals
,
Anti-inflammatory drugs
2024
APRIL (A Proliferation-Inducing Ligand), a member of the TNF superfamily, was initially described for its ability to promote proliferation of tumor cells
in vitro
. Moreover, this cytokine has been related to the pathogenesis of different chronic inflammatory diseases, such as rheumatoid arthritis. This study aimed to evaluate the ability of APRIL in regulating B cell-mediated immune response in the antigen-induced arthritis (AIA) model in mice. AIA was induced in previously immunized APRIL-transgenic (Tg) mice and their littermates by administration of antigen (mBSA) into the knee joints. Different inflammatory cell populations in spleen and draining lymph nodes were analyzed using flow cytometry and the assay was performed in the acute and chronic phases of the disease, while cytokine levels were assessed by ELISA. In the acute AIA, APRIL-Tg mice developed a less severe condition and a smaller inflammatory infiltrate in articular tissues when compared with their littermates. We also observed that the total cellularity of draining lymph nodes was decreased in APRIL-Tg mice. Flow cytometry analysis revealed an increase of CD19
+
IgM
+
CD5
+
cell population in draining lymph nodes and an increase of CD19
+
CD21
hi
CD23
hi
(B regulatory) cells in APRIL-Tg mice with arthritis as well as an increase of IL-10 and CXCL13 production
in vitro
.
Journal Article
A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner
2020
Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines:
Plasmodium berghei
K173 and
Plasmodium yoelii
17X YM. We established that the protective effects of these
Plasmodium
lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.
Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent
Plasmodium
species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by
Plasmodium berghei
K173 or
Plasmodium yoelii
17X YM, protect against
P. berghei
ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective
Plasmodium
stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4
+
Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4
+
T cells. Our work identifies a virus cohosted in several
Plasmodium
stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.
IMPORTANCE
Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines:
Plasmodium berghei
K173 and
Plasmodium yoelii
17X YM. We established that the protective effects of these
Plasmodium
lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.
Journal Article
In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice
by
Letesson, Jean-Jacques
,
Copin, Richard
,
Vanderwinden, Jean-Marie
in
Animal
,
Animals
,
Bacteria
2012
Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b⁺ F4/80⁺ MHC-II⁺ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS⁺ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.
Journal Article
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
by
Shay, Tal
,
Ivanov, Stoyan
,
Gordonov, Simon
in
631/250/2502
,
631/250/2504/133
,
631/250/2504/342
2012
By comparing gene-expression profiles, Randolph and colleagues distinguish different types of macrophages and pinpoint the differences between macrophages and dendritic cells.
We assessed gene expression in tissue macrophages from various mouse organs. The diversity in gene expression among different populations of macrophages was considerable. Only a few hundred mRNA transcripts were selectively expressed by macrophages rather than dendritic cells, and many of these were not present in all macrophages. Nonetheless, well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages. TCEF3, C/EBP-α, Bach1 and CREG-1 were among the transcriptional regulators predicted to regulate these core macrophage-associated genes. The mRNA encoding other transcription factors, such as
Gata6
, was associated with single macrophage populations. We further identified how these transcripts and the proteins they encode facilitated distinguishing macrophages from dendritic cells.
Journal Article
Dendritic cell subsets in T cell programming: location dictates function
2019
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Journal Article
Brain control of humoral immune responses amenable to behavioural modulation
It has been speculated that brain activities might directly control adaptive immune responses in lymphoid organs, although there is little evidence for this. Here we show that splenic denervation in mice specifically compromises the formation of plasma cells during a T cell-dependent but not T cell-independent immune response. Splenic nerve activity enhances plasma cell production in a manner that requires B-cell responsiveness to acetylcholine mediated by the α9 nicotinic receptor, and T cells that express choline acetyl transferase
1
,
2
probably act as a relay between the noradrenergic nerve and acetylcholine-responding B cells. We show that neurons in the central nucleus of the amygdala (CeA) and the paraventricular nucleus (PVN) that express corticotropin-releasing hormone (CRH) are connected to the splenic nerve; ablation or pharmacogenetic inhibition of these neurons reduces plasma cell formation, whereas pharmacogenetic activation of these neurons increases plasma cell abundance after immunization. In a newly developed behaviour regimen, mice are made to stand on an elevated platform, leading to activation of CeA and PVN CRH neurons and increased plasma cell formation. In immunized mice, the elevated platform regimen induces an increase in antigen-specific IgG antibodies in a manner that depends on CRH neurons in the CeA and PVN, an intact splenic nerve, and B cell expression of the α9 acetylcholine receptor. By identifying a specific brain–spleen neural connection that autonomically enhances humoral responses and demonstrating immune stimulation by a bodily behaviour, our study reveals brain control of adaptive immunity and suggests the possibility to enhance immunocompetency by behavioural intervention.
Neuronal activities in the central amygdala and paraventricular nucleus are transmitted via the splenic nerve to increase plasma cell formation after immunization, and this process can be behaviourally enhanced in mice.
Journal Article
A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity
2020
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells
1
,
2
. Here we show that a recombinant vaccine that comprises residues 319–545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (
Macaca mulatta
) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.
A recombinant vaccine that targets the receptor-binding domain of the spike protein of SARS-CoV-2 induces a potent antibody response in immunized mice, rabbits and non-human primates, and protects primates from infection with the virus.
Journal Article
Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy
by
Lees, Justin G.
,
Butovsky, Oleg
,
Park, Susanna B.
in
Activating Transcription Factor 3 - genetics
,
Activating Transcription Factor 3 - immunology
,
Animals
2017
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.
Journal Article
Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1β secretion
Zika virus (ZIKV) infection is a public health emergency and host innate immunity is essential for the control of virus infection. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase-1 to facilitate interleukin-1β (IL-1β) secretion. Here we report that ZIKV stimulates IL-1β secretion in infected patients, human PBMCs and macrophages, mice, and mice BMDCs. The knockdown of NLRP3 in cells and knockout of NLRP3 in mice inhibit ZIKV-mediated IL-1β secretion, indicating an essential role for NLRP3 in ZIKV-induced IL-1β activation. Moreover, ZIKV NS5 protein is required for NLRP3 activation and IL-1β secretion by binding with NLRP3 to facilitate the inflammasome complex assembly. Finally, ZIKV infection in mice activates IL-1β secretion, leading to inflammatory responses in the mice brain, spleen, liver, and kidney. Thus we reveal a mechanism by which ZIKV induces inflammatory responses by facilitating NLRP3 inflammasome complex assembly and IL-1β activation.
The NLRP3 inflammasome plays an important role in antiviral host responses. Here, the authors reveal that the polymerase of Zika virus binds NLRP3 to facilitate inflammasome complex assembly and induce production of IL-1β in human macrophages, human PBMCs and mice, resulting in pathogenesis in mice.
Journal Article
B cell–helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen
by
Magri, Giuliana
,
Fortuny, Claudia
,
Dufour, Carlo
in
631/250/1619/40
,
631/250/2504/223/1699
,
631/250/262
2012
Follicular T cells provide help to B cells to elicit antibody responses. Cerutti and colleagues show that neutrophils provide help to marginal-zone B cells that produce T cell–independent antibodies.
Neutrophils use immunoglobulins to clear antigen, but their role in immunoglobulin production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T cell–independent immunoglobulin responses to circulating antigen. Neutrophils colonized peri-MZ areas after postnatal mucosal colonization by microbes and enhanced their B cell–helper function after receiving reprogramming signals, including interleukin 10 (IL-10), from splenic sinusoidal endothelial cells. Splenic neutrophils induced immunoglobulin class switching, somatic hypermutation and antibody production by activating MZ B cells through a mechanism that involved the cytokines BAFF, APRIL and IL-21. Neutropenic patients had fewer and hypomutated MZ B cells and a lower abundance of preimmune immunoglobulins to T cell–independent antigens, which indicates that neutrophils generate an innate layer of antimicrobial immunoglobulin defense by interacting with MZ B cells.
Journal Article