Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
345 result(s) for "Spore-forming bacteria"
Sort by:
Cellulolytic Properties of a Potentially Lignocellulose-Degrading Bacillus sp. 8E1A Strain Isolated from Bulk Soil
Cellulolytic enzymes produced by spore-forming bacteria seem to be a potential solution to the degradation of lignocellulosic waste. In this study, several dozen bacterial spore-forming strains were isolated from soil and one of them was selected for further studies. The studied bacterial strain was identified to genus Bacillus (strain 8E1A) by 16S rRNA gene sequencing. Bacillus sp. 8E1A showed an activity of carboxymethyl cellulase (CMCase) with visualization with Congo Red-25 mm (size of clear zone). To study CMCase, filter paper hydrolase (FPase), and microcrystalline cellulose Avicel hydrolase (Avicelase) production, three different cellulose sources were used for bacterial strain cultivation: carboxymethyl cellulose (CMC), filter paper (FP), and microcrystalline cellulose Avicel. The highest CMCase (0.617 U mL−1), FPase (0.903 U mL−1), and Avicelase (0.645 U mL−1) production of Bacillus sp. 8E1A was noted for using CMC (after 216 h of incubation), Avicel cellulose (after 144 h of incubation), and CMC (after 144 h of incubation), respectively. Subsequently, the cellulases’ activity was measured at various temperatures and pH values. The optimal temperature for CMCase (0.535 U mL−1) and Avicelase (0.666 U mL−1) activity was 70 °C. However, the highest FPase (0.868 U mL−1) activity was recorded at 60 °C. The highest CMCase and Avicelase activity was recorded at pH 7.0 (0.520 and 0.507 U mL−1, respectively), and the optimum activity of FPase was noted at pH 6.0 (0.895 U mL−1). These results indicate that the cellulases produced by the Bacillus sp. 8E1A may conceivably be used for lignocellulosic waste degradation in industrial conditions.
Flow of spore-forming bacteria between suppliers of dairy powders and users in some developing countries: challenges and perspectives
Spore-forming bacteria are common contaminants of milk powder and processing lines and a major concern for the dairy industry. This dairy-associated microflora was studied extensively and well characterized in developed countries (exporters of milk powder), compared to developing countries (importers). Thereby, the quality issues affecting dairy powders and derived products are not fully controlled in developing countries. That is the case in Algeria, where recombined or reconstituted pasteurized milk is of low quality, reduced shelf-life, and the related dairies faced recurrent contaminations due to spores and biofilms. The transfer of spore-forming bacteria from exporters of dairy powders to importers in developing countries is an interesting topic, not thoroughly investigated. In addition, milk powder-based products are growing worldwide and their attributes, processes and technologies need to be better understood and controlled. This review analyzes issues affecting milk powder quality, based on few studies from developing countries in comparison with current knowledge, and emphasis on the case in Algeria. It provides information on how spore-forming bacteria and their biofilms affect the quality and shelf-life of recombined pasteurized milk produced in Algeria and compromise hygiene conditions in local dairy plants. Challenges and perspectives for better management of spore transfer from exporters of dairy powders to importers in developing countries are thereby outlined.HighlightsThe presence of spore-forming bacteria in milk powder is a serious safety issue.Spores are not well known, characterized and controlled in importers from developing countries.Spores cause recurrent contamination of pasteurized milk and biofilm issues in Algerian dairies.Challenges are how to reduce the flow of spores in milk powder trade.Perspectives on identification targeting predominant spores and improvement of biofilm removal.
The Reaction of Cellulolytic and Potentially Cellulolytic Spore-Forming Bacteria to Various Types of Crop Management and Farmyard Manure Fertilization in Bulk Soil
The ecology of cellulolytic bacteria in bulk soil is still relatively unknown. There is still only a handful of papers on the abundance and diversity of this group of bacteria. Our study aimed to determine the impact of various crop management systems and farmyard manure (FYM) fertilization on the abundance of cellulolytic and potentially cellulolytic spore-forming bacteria (SCB). The study site was a nearly 100-year-old fertilization experiment, one of the oldest still active field trials in Europe. The highest contents of total carbon (TC) and total nitrogen (TN) were recorded in both five-year rotations. The abundances of SCB and potential SCB were evaluated using classical microbiological methods, the most probable number (MPN), and 16S rRNA Illumina MiSeq sequencing. The highest MPN of SCB was recorded in soil with arbitrary rotation without legumes (ARP) fertilized with FYM (382 colony-forming units (CFU) mL−1). As a result of the bioinformatic analysis, the highest values of the Shannon–Wiener index and the largest number of operational taxonomic units (OTUs) were found in ARP-FYM, while the lowest in ARP treatment without FYM fertilization. In all treatments, those dominant at the order level were: Brevibacillales (13.1–43.4%), Paenibacillales (5.3–36.9%), Bacillales (4.0–0.9%). Brevibacillaceae (13.1–43.4%), Paenibacillaceae (8.2–36.9%), and Clostridiaceae (5.4–11.9%) dominated at the family level in all tested samples. Aneurinibacillaceae and Hungateiclostridiaceae families increased their overall share in FYM fertilization treatments. The results of our research show that the impact of crop management types on SCB was negligible while the actual factor shaping SCB community was the use of FYM fertilization.
Probiotic effect of Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999D complex on sheep and lambs
Probiotics are well documented for their health benefits by developing a balanced intestinal microbiota and boosting immunity. The present study was conducted to determine the effects of a probiotic preparation Enzimsporin (consisting of spore-forming bacteria B-2998D, B-3057D, and B-2999D) on the biochemical, hematological, immunological parameters, intestinal microbiota, and growth dynamics of sheep and lambs. Enzimsporin was fed to lambs and sheep at different doses to determine the bacteria's probiotic effects. Sheep were divided into three groups (six each), which received 0, 1, and 3 gm of Enzimsporin/per head/day, respectively, and two groups of lambs (10 each), who received 0 gm and 1 gm of Enzimsporin/per head/day for 30 days in addition to their regular ration. On day 30, blood samples were collected, followed by the determination of biochemical, hematological, and natural resistance indicators. Fecal samples were examined to determine the intestinal microflora, and animals were weighed daily to determine their growth dynamics. Supplementation of probiotics (Enzimsporin ) improved the lambs' body weight gain by 18.8%. Analysis of the clinical parameters showed improvements in the levels of total protein, globulins, and urea by 5.3%, 10.8%, and 6.2%, respectively, in the blood of probiotic-supplemented lambs. Similarly, an increment in the total protein, albumins, and globulins was observed in the sheep with Enzimsporin supplementation. The decrease in bilirubin and cholesterol levels in the blood and increased bactericidal and phagocytic index in the sheep and lambs with probiotic supplementation indicated a positive influence of Enzimsporin on the liver function and natural resistance. Furthermore, an increase in and and a decrease in the , , and Yeast in the fecal contents of experimental sheep and lambs indicated the potentiality of Enzimsporin on maintaining good gut health. Spore-forming bacteria B-2998D, B-3057D, and B-2999D can be used in feeding sheep and lambs of 2 months of age to increase body weight gain, improve intestinal microbiota, strengthen the immune system, and maintain normal metabolic processes.
Diversity and activity of microorganisms in Antarctic polar soils
The study is focused on microbiological analyses in polar soils in selected monitoring sites in Livingstone Island, Antarctica region. The analyses include determination of the quantity and qualitative composition of the heterotrophic block of soil microflora (non-spore-forming bacteria, bacilli, actinomycetes, micromycetes, bacteria absorbing mineral nitrogen), insofar as it plays a major role in the element cycling and soil formation processes. Aerobic (rapidly and slowly growing) and anaerobic groups of soil microorganisms were investigated and the biogenicity (total microflora) and the rate of mineralisation processes (mineralisation coefficient) were determined. Mostly non-spore-forming aerobic bacteria, followed by actinomycetes, are dominant in determining the biogenicity of the studied polar soils. The rearrangement of the microorganisms in the composition of the total microflora by degree of dominance indicates the participation of all the studied groups of microorganisms in most sites in the initial and final stages of the decomposition of organic matter. The mineralisation of soils is most active in sites with vegetation cover. The established pigmentation in aerobic microorganisms is probably due to their good adaptation and protection under extreme polar conditions, while the absence of oxygen impedes the formation of pigments.
Potential of five non-spore-forming bacteria, originated from the European cockchafer, Melolontha melolontha (Linnaeus, 1758) (Coleoptera: Scarabaeidae), on three economic insect pests
Five non-spore-forming bacteria were isolated from the European cockchafer, Melolontha melolontha ( Linnaeus , 1758 ) (Coleoptera: Scarabaeidae). Their potential was tested against the three economic insect pests, the great spruce bark beetle, Dendroctonus micans Kugelann (Coleoptera: Curculionidae); the pine processionary, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae); and the gypsy moth, Lymantria dispar (Linn.) (Lepidoptera: Erebidae), to find an effective biological control agent. All isolated bacteria were cultured and identified using VITEK bacterial identification systems and 16S rRNA gene sequence analysis. The bacteria were identified as Enterobacter cloacae complex (isolate 1M), Serratia marcescens (isolate 3M), Pseudomonas aeruginosa (isolate 4M), Kocuria kristinae (isolate 5M), and Serratia liquefaciens (isolate 8M). Laboratory experiments, carried out to evaluate the virulence of these isolates, showed that all isolated bacteria had a pathogenic effect on the tested pests. E . cloacae had 35, 56.7, and 84%; S . marcescens 50, 60.9, and 47.8%; P . aeruginosa 55, 69.6, and 48%; K . kristinae 40, 43.5, and 16%; and S . liquefaciens 45, 65.2, and 36% mortality rates on the larvae of D . micans , T . pityocampa , and L . dispar , respectively. The isolated bacteria can be considered in integrated pest control programs.
Bioremediation of Heavy Metals by the Genus Bacillus
Environmental contamination with heavy metals is one of the major problems caused by human activity. Bioremediation is an effective and eco-friendly approach that can reduce heavy metal contamination in the environment. Bioremediation agents include bacteria of the genus Bacillus, among others. The best-described species in terms of the bioremediation potential of Bacillus spp. Are B. subtilis, B. cereus, or B. thuringiensis. This bacterial genus has several bioremediation strategies, including biosorption, extracellular polymeric substance (EPS)-mediated biosorption, bioaccumulation, or bioprecipitation. Due to the above-mentioned strategies, Bacillus spp. strains can reduce the amounts of metals such as lead, cadmium, mercury, chromium, arsenic or nickel in the environment. Moreover, strains of the genus Bacillus can also assist phytoremediation by stimulating plant growth and bioaccumulation of heavy metals in the soil. Therefore, Bacillus spp. is one of the best sustainable solutions for reducing heavy metals from various environments, especially soil.
Plant Growth Promotion Using Bacillus cereus
Plant growth-promoting bacteria (PGPB) appear to be a sensible competitor to conventional fertilization, including mineral fertilizers and chemical plant protection products. Undoubtedly, one of the most interesting bacteria exhibiting plant-stimulating traits is, more widely known as a pathogen, Bacillus cereus. To date, several environmentally safe strains of B. cereus have been isolated and described, including B. cereus WSE01, MEN8, YL6, SA1, ALT1, ERBP, GGBSTD1, AK1, AR156, C1L, and T4S. These strains have been studied under growth chamber, greenhouse, and field conditions and have shown many significant traits, including indole-3-acetic acid (IAA) and aminocyclopropane-1-carboxylic acid (ACC) deaminase production or phosphate solubilization, which allows direct plant growth promotion. It includes an increase in biometrics traits, chemical element content (e.g., N, P, and K), and biologically active substances content or activity, e.g., antioxidant enzymes and total soluble sugar. Hence, B. cereus has supported the growth of plant species such as soybean, maize, rice, and wheat. Importantly, some B. cereus strains can also promote plant growth under abiotic stresses, including drought, salinity, and heavy metal pollution. In addition, B. cereus strains produced extracellular enzymes and antibiotic lipopeptides or triggered induced systemic resistance, which allows indirect stimulation of plant growth. As far as biocontrol is concerned, these PGPB can suppress the development of agriculturally important phytopathogens, including bacterial phytopathogens (e.g., Pseudomonas syringae, Pectobacterium carotovorum, and Ralstonia solanacearum), fungal phytopathogens (e.g., Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani), and other phytopathogenic organisms (e.g., Meloidogyne incognita (Nematoda) and Plasmodiophora brassicae (Protozoa)). In conclusion, it should be noted that there are still few studies on the effectiveness of B. cereus under field conditions, particularly, there is a lack of comprehensive analyses comparing the PGP effects of B. cereus and mineral fertilizers, which should be reduced in favor of decreasing the use of mineral fertilizers. It is also worth mentioning that there are still very few studies on the impact of B. cereus on the indigenous microbiota and its persistence after application to soil. Further studies would help to understand the interactions between B. cereus and indigenous microbiota, subsequently contributing to increasing its effectiveness in promoting plant growth.
Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens
The high susceptibility of neonates to infections has been assumed to be due to immaturity of the immune system, but the mechanism remains unclear. By colonizing adult germ-free mice with the cecal contents of neonatal and adult mice, we show that the neonatal microbiota is unable to prevent colonization by two bacterial pathogens that cause mortality in neonates. The lack of colonization resistance occurred when Clostridiales were absent in the neonatal microbiota. Administration of Clostridiales, but not Bacteroidales, protected neonatal mice from pathogen infection and abrogated intestinal pathology upon pathogen challenge. Depletion of Clostridiales also abolished colonization resistance in adult mice. The neonatal bacteria enhanced the ability of protective Clostridiales to colonize the gut.
Antimicrobial Bacillus: Metabolites and Their Mode of Action
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.