Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,835
result(s) for
"Sports Statistical methods."
Sort by:
Sports research with analytical solution using SPSS
A step-by-step approach to problem-solving techniques using SPSS® in the fields of sports science and physical education
Featuring a clear and accessible approach to the methods, processes, and statistical techniques used in sports science and physical education, Sports Research with Analytical Solution using SPSS® emphasizes how to conduct and interpret a range of statistical analysis using SPSS. The book also addresses issues faced by research scholars in these fields by providing analytical solutions to various research problems without reliance on mathematical rigor.
Logically arranged to cover both fundamental and advanced concepts, the book presents standard univariate and complex multivariate statistical techniques used in sports research such as multiple regression analysis, discriminant analysis, cluster analysis, and factor analysis. The author focuses on the treatment of various parametric and nonparametric statistical tests, which are shown through the techniques and interpretations of the SPSS outputs that are generated for each analysis. Sports Research with Analytical Solution using SPSS® also features:
* Numerous examples and case studies to provide readers with practical applications of the analytical concepts and techniques
* Plentiful screen shots throughout to help demonstrate the implementation of SPSS outputs
* Illustrative studies with simulated realistic data to clarify the analytical techniques covered
* End-of-chapter short answer questions, multiple choice questions, assignments, and practice exercises to help build a better understanding of the presented concepts
* A companion website with associated SPSS data files and PowerPoint® presentations for each chapter
Sports Research with Analytical Solution using SPSS® is an excellent textbook for upper-undergraduate, graduate, and PhD-level courses in research methods, kinesiology, sports science, medicine, nutrition, health education, and physical education. The book is also an ideal reference for researchers and professionals in the fields of sports research, sports science, physical education, and social sciences, as well as anyone interested in learning SPSS.
An introduction to intermediate and advanced statistical analyses for sport and exercise scientists
by
Nicholas D. Myers
,
Nikos Ntoumanis
in
Athletic Performance -- statistics & numerical data
,
Data processing
,
Mathematical statistics
2016,2015
\"Ntoumanis and Myers have done sport and exercise science researchers and students a tremendous service in producing An Introduction to Intermediate and Advanced Statistical Analyses for Sport and Exercise Scientists. This book has an outstanding compilation of comprehensible chapters dealing with the important concepts and technical minutia of the statistical analyses that sport and exercise science scholars use (or should be using!) in their efforts to conduct meaningful research in the field. It is a resource that all sport and exercise scientists and their students should have on their book shelves.\"
—Robert Eklund, School of Sport, University of Stirling, UK
\"Motivating, to have a statistics text devoted to enabling researchers studying sport and exercise science to apply the most sophisticated analytical techniques to their data. Authors hit the mark between using technical language as necessary and user-friendly terms or translations to keep users encouraged. Text covers traditional and well-used tools but also less common and more complex tools, but always with familiar examples to make their explanations come alive. As a dynamic systems theorist and developmentalist, I would love to see more researchers in my area create study designs that would enable the use of tools outlined here, such as multilevel structural equation modeling (MSEM) or mediation & moderation analyses, to uncover cascades of relations among subsystems contributing to motor performance, over time. This text can facilitate that outcome.\"
—Beverly D. Ulrich, School of Kinesiology, University of Michigan, USA
\"The domain of quantitative methods is constantly evolving and expanding. This means that there is tremendous pressure on researchers to stay current, both in terms of best practices and improvements in more traditional methods as well as increasingly complex new methods. With this volume Ntoumanis and Myers present a nice cross-section of both, helping sport and exercise science researchers to address old questions in better ways, and, even more excitingly, to address new questions entirely. I have no doubt that this volume will quickly become a lovingly dog-eared companion for students and researchers, helping them to continue to move the field forward.\"
—Gregory R. Hancock, University of Maryland and Center for Integrated Latent Variable Research (CILVR), USA
Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance
by
Moher, David
,
Wright, Alexis A
,
Büttner, Fionn
in
Consensus Statement
,
Decision making
,
Evaluation
2022
Poor reporting of medical and healthcare systematic reviews is a problem from which the sports and exercise medicine, musculoskeletal rehabilitation, and sports science fields are not immune. Transparent, accurate and comprehensive systematic review reporting helps researchers replicate methods, readers understand what was done and why, and clinicians and policy-makers implement results in practice. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement and its accompanying Explanation and Elaboration document provide general reporting examples for systematic reviews of healthcare interventions. However, implementation guidance for sport and exercise medicine, musculoskeletal rehabilitation, and sports science does not exist. The Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science (PERSiST) guidance attempts to address this problem. Nineteen content experts collaborated with three methods experts to identify examples of exemplary reporting in systematic reviews in sport and exercise medicine (including physical activity), musculoskeletal rehabilitation (including physiotherapy), and sports science, for each of the PRISMA 2020 Statement items. PERSiST aims to help: (1) systematic reviewers improve the transparency and reporting of systematic reviews and (2) journal editors and peer reviewers make informed decisions about systematic review reporting quality.
Journal Article
A CHecklist for statistical Assessment of Medical Papers (the CHAMP statement): explanation and elaboration
by
Jewell, Nicholas P
,
Collins, Gary S
,
Nielsen, Rasmus Oestergaard
in
Biomedical Research
,
Checklist
,
Consensus statement
2021
Misuse of statistics in medical and sports science research is common and may lead to detrimental consequences to healthcare. Many authors, editors and peer reviewers of medical papers will not have expert knowledge of statistics or may be unconvinced about the importance of applying correct statistics in medical research. Although there are guidelines on reporting statistics in medical papers, a checklist on the more general and commonly seen aspects of statistics to assess when peer-reviewing an article is needed. In this article, we propose a CHecklist for statistical Assessment of Medical Papers (CHAMP) comprising 30 items related to the design and conduct, data analysis, reporting and presentation, and interpretation of a research paper. While CHAMP is primarily aimed at editors and peer reviewers during the statistical assessment of a medical paper, we believe it will serve as a useful reference to improve authors’ and readers’ practice in their use of statistics in medical research. We strongly encourage editors and peer reviewers to consult CHAMP when assessing manuscripts for potential publication. Authors also may apply CHAMP to ensure the validity of their statistical approach and reporting of medical research, and readers may consider using CHAMP to enhance their statistical assessment of a paper.
Journal Article
Data analysis in sport
\"Making sense of sports performance data can be a challenging task but is nevertheless an essential part of performance analysis investigations. Focusing on techniques used in the analysis of sport performance, this book introduces the fundamental principles of data analysis, explores the most important tools used in data analysis, and offers guidance on the presentation of results. The book covers key topics such as: The purpose of data analysis, from statistical analysis to algorithmic processing Commercial packages for performance and data analysis, including Focus, Sportscode, Dartfish, Prozone, Excel, SPSS and Matlab Effective use of statistical procedures in sport performance analysis Analysing data from manual notation systems, player tracking systems and computerized match analysis systems Creating visually appealing 'dashboard' interfaces for presenting data Assessing reliability. The book includes worked examples from real sport, offering clear guidance to the reader and bringing the subject to life. This book is invaluable reading for any student, researcher or analyst working in sport performance or undertaking a sport-related research project or methods course\"-- Provided by publisher.
A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League
2015
We develop a statistical model for the analysis and forecasting of football match results which assumes a bivariate Poisson distribution with intensity coefficients that change stochastically over time. The dynamic model is a novelty in the statistical time series analysis of match results in team sports. Our treatment is based on state space and importance sampling methods which are computationally efficient. The out-of-sample performance of our methodology is verified in a betting strategy that is applied to the match outcomes from the 2010–2011 and 2011–2012 seasons of the English football Premier League. We show that our statistical modelling framework can produce a significant positive return over the bookmaker's odds.
Journal Article