Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
386 result(s) for "Squalene - immunology"
Sort by:
HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions
Human cytomegalovirus (HCMV) is the most common congenital infection worldwide, frequently causing hearing loss and brain damage in afflicted infants. A vaccine to prevent maternal acquisition of HCMV during pregnancy is necessary to reduce the incidence of infant disease. The glycoprotein B (gB) + MF59 adjuvant subunit vaccine platformis the most successful HCMV vaccine tested to date, demonstrating ∼50% efficacy in preventing HCMV acquisition in multiple phase 2 trials. However, the mechanism of vaccine protection remains unknown. Plasma from 33 postpartum women gB/MF59 vaccinees at peak immunogenicity was tested for gB epitope specificity as well as neutralizing and nonneutralizing anti-HCMV effector functions and comparedwith an HCMV-seropositive cohort. gB/MF59 vaccination elicited IgG responses with gB-binding magnitude and avidity comparable to natural infection. Additionally, IgG subclass distribution was similar with predominant IgG1 and IgG3 responses induced by gB vaccination and HCMV infection. However, vaccine-elicited antibodies exhibited limited neutralization of the autologous virus, negligible neutralization of multiple heterologous strains, and limited binding responses against gB structural motifs targeted by neutralizing antibodies including AD-1, AD-2, and domain I. Vaccinees had high-magnitude IgG responses against AD-3 linear epitopes, demonstrating immunodominance against this nonneutralizing, cytosolic region. Finally, vaccine-elicited IgG robustly bound membrane-associated gB on the surface of transfected or HCMV-infected cells and mediated virion phagocytosis, although were poor mediators of NK cell activation. Altogether, these data suggest that nonneutralizing antibody functions, including virion phagocytosis, likely played a role in the observed 50% vaccine-mediated protection against HCMV acquisition.
Trial of 2009 Influenza A (H1N1) Monovalent MF59-Adjuvanted Vaccine
In this report regarding an MF59-adjuvanted 2009 H1N1 monovalent vaccine, significant immune responses were elicited by the administration of one or two doses of vaccine (with or without the MF59 adjuvant) in most subjects within 2 to 3 weeks. Higher titers were seen in subjects who received the MF59-adjuvanted vaccine. In this report regarding a monovalent MF59-adjuvanted 2009 H1N1 vaccine, significant immune responses were elicited by the administration of one or two doses of vaccine (with or without the MF59 adjuvant) in most subjects within 2 to 3 weeks. Higher titers were seen in subjects who received the MF59-adjuvanted vaccine. The emergence of the 2009 pandemic influenza A (H1N1) virus demonstrates the unpredictable nature of influenza. 1 The virus has the potential to cause disease, death, and socioeconomic disruption, 2 , 3 and modeling suggests that the effect of the virus can be reduced by immunization. 4 The development of effective vaccines is a public health priority. Traditional seasonal influenza vaccines are produced from reassortant vaccine strains grown in hens' eggs. However, demand for vaccine against the 2009 H1N1 virus will most likely exceed the supply if this method of manufacturing is solely used. Cell culture provides an additional platform for the manufacture of . . .
Immunogenicity and safety of the MF59-adjuvanted seasonal influenza vaccine in non-elderly adults: A systematic review and meta-analysis
In Europe, the age indication for the MF59-adjuvanted quadrivalent influenza vaccine (aQIV) has recently been extended from ≥65 to ≥50 years. Considering that the earliest approval of its trivalent formulation (aTIV) in Italy was for people aged ≥12 years, we aimed to systematically appraise data on the immunogenicity, efficacy, and safety of aTIV/aQIV in non-elderly adults. A systematic literature review was conducted according to the available guidelines and studies were searched in MEDLINE, Biological Abstracts, Web of Science, Cochrane Library and clinical trial registries. Studies on absolute and relative immunogenicity, efficacy, effectiveness, and safety of aTIV/aQIV in non-elderly adults (<65 years) were potentially eligible. These endpoints were analyzed by virus (sub)types and characteristics of vaccinees. Fixed- and random-effects meta-analyses were performed for data synthesis. Protocol registration: CRD42024512472. Twenty-four publications were analyzed. aTIV/aQIV was more immunogenic than non-adjuvanted vaccines towards vaccine-like strains: the absolute differences in seroconversion rates were 8.8% (95% CI: 3.7%, 14.0%), 13.1% (95% CI: 6.7%, 19.6%) and 11.7% (95% CI: 7.2%, 16.2%) for A(H1N1), A(H3N2), and B strains, respectively. This immunogenicity advantage was more pronounced in immunosuppressed adults. Additionally, aTIV/aQIV was more immunogenic than non-adjuvanted counterparts towards heterologous A(H3N2) strains with a 10.7% (95% CI: 3.2%, 18.2%) difference in seroconversion rates. Data on antibody persistence and efficacy were limited and inconclusive. Overall, aTIV/aQIV was judged safe and well tolerated, although reactogenic events were more frequent in aTIV/aQIV recipients versus comparators. Serious adverse events were uncommon and no difference (risk ratio 1.02; 95% CI: 0.64, 1.63) between aTIV/aQIV and non-adjuvanted formulations was found. In non-elderly adults, aTIV/aQIV is safe and generally more immunogenic than non-adjuvanted standard-dose vaccines.
Selective induction of antibody effector functional responses using MF59-adjuvanted vaccination
Seasonal and pandemic influenza infection remains a major public health concern worldwide. Driving robust humoral immunity has been a challenge given preexisting, often cross-reactive, immunity and in particular, poorly immunogenic avian antigens. To overcome immune barriers, the adjuvant MF59 has been used in seasonal influenza vaccines to increase antibody titers and improve neutralizing activity, translating to a moderate increase in protection in vulnerable populations. However, its effects on stimulating antibody effector functions, including NK cell activation, monocyte phagocytosis, and complement activity, all of which have been implicated in protection against influenza, have yet to be defined. Using systems serology, we assessed changes in antibody functional profiles in individuals who received H5N1 avian influenza vaccine administered with MF59, with alum, or delivered unadjuvanted. MF59 elicited antibody responses that stimulated robust neutrophil phagocytosis and complement activity. Conversely, vaccination with MF59 recruited NK cells poorly and drove moderate monocyte phagocytic activity, both likely compromised because of the induction of antibodies that did not bind FCGR3A. Collectively, defining the humoral antibody functions induced by distinct adjuvants may provide a path to designing next-generation vaccines that can selectively leverage the humoral immune functions, beyond binding and neutralization, resulting in better protection from infection.
Epitope-Specific Humoral Responses to Human Cytomegalovirus Glycoprotein-B Vaccine With MF59: Anti-AD2 Levels Correlate With Protection From Viremia
The human cytomegalovirus (HCMV) virion envelope protein glycoprotein B (gB) is essential for viral entry and represents a major target for humoral responses following infection. Previously, a phase 2 placebo-controlled clinical trial conducted in solid organ transplant candidates demonstrated that vaccination with gB plus MF59 adjuvant significantly increased gB enzyme-linked immunosorbent assay (ELISA) antibody levels whose titer correlated directly with protection against posttransplant viremia. The aim of the current study was to investigate in more detail this protective humoral response in vaccinated seropositive transplant recipients. We focused on 4 key antigenic domains (AD) of gB (AD1, AD2, AD4, and AD5), measuring antibody levels in patient sera and correlating these with posttransplant HCMV viremia. Vaccination of seropositive patients significantly boosted preexisting antibody levels against the immunodominant region AD1 as well as against AD2, AD4, and AD5. A decreased incidence of viremia correlated with higher antibody levels against AD2 but not with antibody levels against the other 3 ADs. Overall, these data support the hypothesis that antibodies against AD2 are a major component of the immune protection of seropositives seen following vaccination with gB/MF59 vaccine and identify a correlate of protective immunity in allograft patients.
Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes
Vaccine adjuvants such as alum and the oil-in-water emulsion MF59 are used to enhance immune responses towards pure soluble antigens, but their mechanism of action is still largely unclear. Since most adjuvanted vaccines are administered intramuscularly, we studied immune responses in the mouse muscle and found that both adjuvants were potent inducers of chemokine production and promoted rapid recruitment of CD11b + cells. The earliest and most abundantly recruited cell type are neutrophils, followed by monocytes, eosinophils and later dendritic cells (DCs) and macrophages. Using fluorescent forms of MF59 and ovalbumin (OVA) antigen, we show that all recruited cell types take up both adjuvant and antigen to transport them to the draining lymph nodes (LNs). There, we found antigen-positive neutrophils and monocytes within hours of injection, later followed by B cells and DCs. Compared to alum, MF59-injection lead to a more prominent neutrophil recruitment and a more efficient antigen re-localization from the injection site to the LN. As antigen-transporting neutrophils were observed in draining LNs, we asked whether these cells play an essential role in MF59-mediated adjuvanticity. However, antibody-mediated neutrophil ablation left MF59-adjuvanticity unaltered. Further studies will reveal whether other single cell types are crucial or whether the different recruited cell populations are redundant with overlapping functions.
The mechanism of action of MF59 – An innately attractive adjuvant formulation
► MF59 is a safe and well established vaccine adjuvant. ► The mechanism of action of adjuvants is often poorly defined. ► A key component of the mechanism of action of MF59 is cellular recruitment to the injection site. ► MF59 creates a local immunocompetent environment at the injection site. MF59 is a safe and effective vaccine adjuvant which was originally approved to be included in a licensed influenza vaccine to be used in the elderly in Europe in 1997. The MF59 adjuvanted influenza vaccine (Fluad™) is now licensed in more than 20 countries worldwide and more than 85 million doses have been administered. More recently the vaccine adjuvant has also been shown to be safe and effective in young children and resulted in a significant increase in influenza vaccine efficacy in a controlled clinical trial in Europe. Since the early days of its discovery we have explored the mechanism of action of MF59, using a variety of available techniques. In recent years we have explored more thoroughly the mechanism of action using new and more sophisticated techniques. It is remarkable how consistent the data has been, using a variety of different approaches both in several small animal models and also using human immune cells in vitro. Here we present a summary of all the work performed to date on the mechanism of action of MF59 and we present a unified theory based on the accumulated data of how it exerts its adjuvant effects. A key element of the mechanism of action appears to be the creation of a transient ‘immunocompetent’ local environment at the injection site, resulting in the recruitment of key immune cells, which are able to take up antigen and adjuvant and transport them to the local lymph nodes, where the immune response is induced. This recruitment appears to be triggered by the induction of a chemokine driven gradient by the impact of MF59 on local cells, which are activated to secrete further chemokines, which are recruitment factors for more immune cells.
A squalene oil emulsified MPL-A and anti-CD200/CD300a antibodies adjuvanted whole-killed Leishmania vaccine provides durable immunity against L. donovani parasites
Antigenic inefficacy to induce robust immune responses and durable memory are major causes of constantly failing prophylactic approaches in leishmaniasis. Here, we determine the potential of a standardized whole-killed Leishmania vaccine (Leishvacc) adjuvanted with anti-CD200 and anti-CD300a antibodies, either alone or with monophosphoryl lipid A (MPL-SE) emulsified in squalene oil, in restoring the compromised antigen presenting abilities of dendritic cells (DCs), effector properties of CD4+T cells and providing protection against Leishmania donovani parasites. In animals vaccinated with antibodies adjuvanted vaccines, either alone or with MPL-SE, the antigen presenting abilities of CD11c+ DCs against Leishmania antigens, measured in terms of CD80, CD86, MHC-I, and MHC-II surface receptors and intracellular IL-12 were found enhanced than non-adjuvanted vaccine. We observed more proliferative and pro-inflammatory cytokines i.e. IL-2, IFN-γ, IL-23, and IL-12 producing CD4+T cells in antibodies/MPL-SE adjuvanted vaccinated animals further suggesting that this approach helps antigen activated CD4+T cells to acquire pro-inflammatory cytokines producing abilities. In antibodies, either alone or with MPL-SE, vaccinated animals, the number of CD4+ central memory T cells and their longevity were found significantly enhanced that further evidenced the impact of this vaccination approach in inducing long term protective immunity. The animals, receiving antibodies adjuvanted vaccines, either alone or with MPL-SE, exhibited excellent protection against virulent parasites by restricting their growth, which correlated with the significantly reduced parasitemia, splenomegaly, and hepatomegaly, along with fewer numbers of liver granulomas. Our findings provide an insight to a new immunoprophylactic approach against visceral leishmaniasis, which not only satisfies the safety criteria, but also provides a robust immunogenic response with remarkable potential for parasites control. However, further in-depth investigations are needed to ascertain its ability in inducing long-lasting immunity. •Anti-CD200 & Cd300a antibodies adjuvantation enhances Leishmania vaccine efficacy.•MPL-SE foster the efficacy of antibodies adjuvanted Leishvacc.•MPL-SE and antibodies adjuvantation enhances dendritic and CD4+T cells functions.•Antibodies adjuvanted Leishvacc, with or without MPL-SE meets the safety criteria.
Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial
Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]). We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 μg, 15 μg, or 45 μg, or one dose of sclamp vaccine at 45 μg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933. Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 μg dose (geometric mean titre [GMT] 6400, 95% CI 3683–11 122), with 15 μg dose (7492, 4959–11 319), and the two 45 μg dose cohorts (8770, 5526–13 920 in the two-dose 45 μg cohort; 8793, 5570–13 881 in the single-dose 45 μg cohort); 4 weeks after the second dose (day 57) with two 5 μg doses (102 400, 64 857–161 676), with two 15 μg doses (74 725, 51 300–108 847), with two 45 μg doses (79 586, 55 430–114 268), only a single 45 μg dose (4795, 2858–8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 μg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 μg doses (GMT 228, 95% CI 146–356), two 15 μg doses (230, 170–312), and two 45 μg doses (239, 187–307). This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response. Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.
Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway
The squalene-based oil-in-water emulsion (SE) vaccine adjuvant MF59 has been administered to more than 100 million people in more than 30 countries, in both seasonal and pandemic influenza vaccines. Despite its wide use and efficacy, its mechanisms of action remain unclear. In this study we demonstrate that immunization of mice with MF59 or its mimetic AddaVax (AV) plus soluble antigen results in robust antigen-specific antibody and CD8 T cell responses in lymph nodes and non-lymphoid tissues. Immunization triggered rapid RIPK3-kinase dependent necroptosis in the lymph node which peaked at 6 hr, followed by a sequential wave of apoptosis. Immunization with alum plus antigen did not induce RIPK3-dependent signaling. RIPK3-dependent signaling induced by MF59 or AV was essential for cross-presentation of antigen to CD8 T cells by Batf3-dependent CD8 + DCs. Consistent with this, RIPK3 deficient or Batf3 deficient mice were impaired in their ability to mount adjuvant-enhanced CD8 T cell responses. However, CD8 T cell responses were unaffected in mice deficient in MLKL, a downstream mediator of necroptosis. Surprisingly, antibody responses were unaffected in RIPK3-kinase or Batf3 deficient mice. In contrast, antibody responses were impaired by in vivo administration of the pan-caspase inhibitor Z-VAD-FMK, but normal in caspase-1 deficient mice, suggesting a contribution from apoptotic caspases, in the induction of antibody responses. These results demonstrate that squalene emulsion-based vaccine adjuvants induce antigen-specific CD8 T cell and antibody responses, through RIPK3-dependent and-independent pathways, respectively.