Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
286
result(s) for
"Squalus"
Sort by:
Investigating nitrogen movement in North Pacific spiny dogfish (Squalus acanthias suckleyi), with focus on UT, Rhp2, and Rhbg mRNA abundance
2023
For ureosmotic marine elasmobranchs, the acquisition and retention of nitrogen is critical for the synthesis of urea. To better understand whole-body nitrogen homeostasis, we investigated mechanisms of nitrogen trafficking in North Pacific spiny dogfish (Squalus acanthias suckleyi). We hypothesized that the presence of nitrogen within the spiral valve lumen would affect both the transport of nitrogen and the mRNA abundance of a urea transporter (UT) and two ammonia transport proteins (Rhp2, Rhbg) within the intestinal epithelium. The in vitro preincubation of intestinal tissues in NH4Cl, intended to simulate dietary nitrogen availability, showed that increased ammonia concentrations did not significantly stimulate the net uptake of total urea or total methylamine. We also examined the mRNA abundance of UT, Rhp2, and Rhbg in the gills, kidney, liver, and spiral valve of fasted, fed, excess urea fed, and antibiotic-treated dogfish. After fasting, hepatic UT mRNA abundance was significantly lower, and Rhp2 mRNA in the gills was significantly higher than the other treatments. Feeding significantly increased Rhp2 mRNA levels in the kidney and mid spiral valve region. Both excess urea and antibiotics significantly reduced Rhbg mRNA levels along all three spiral valve regions. The antibiotic treatment also significantly diminished UT mRNA abundance levels in the anterior and mid spiral valve, and Rhbg mRNA levels in the kidney. In our study, no single treatment had significantly greater influence on the overall transcript abundance of the three transport proteins compared to another treatment, demonstrating the dynamic nature of nitrogen balance in these ancient fish.
Journal Article
Life-history traits of the spiny dogfish Squalus acanthias in the Adriatic Sea
by
Bargione, Giada
,
La Mesa, Mario
,
Lucchetti, Alessandro
in
631/158/672
,
631/601/2722
,
Age composition
2019
Pivotal life history traits concerning age structure and reproduction of the spiny dogfish (
Squalus acanthias
, Linnaeus 1758) were investigated in the Adriatic Sea from mid February 2012 to mid July 2013 and in 2016. The whole sample consisted of 176 females and 150 males, ranging between 217–1025 mm and 219–875 mm, respectively. The individual age, which was estimated using a cross-sectioning technique of the second dorsal-fin spine, ranged from 0 to 13+ years for females and from 0 to 9+ years for males. Based on the length-at-age estimates, the Gompertz growth parameters were L
∞
= 1130 mm, k = 0.18 and L
∞
= 920 mm, k = 0.24 for females and males, respectively. The size at sexual maturity (L
50
) was 659 mm for females and 575 mm for males, corresponding to 7.5 and 5.5 years of age (A
50
), respectively. Mean biennial fecundity was approximately 11 embryos/female and 12 ripe oocytes/female. Mature males occurred during much of the sampling period, while mature females with nearly full-term embryos were exclusively recorded in May 2013 and July 2016. Monitoring of catches conducted in a sample port of the north Adriatic (Chioggia) over the past 20 years has shown fluctuating trends in landings, with peaks during the summer reproductive season.
Journal Article
UT-1 Transporter Expression in the Spiny Dogfish (Squalus acanthias): UT-1 Protein Shows a Different Localization in Comparison to That of Other Sharks
by
Ojo, Tolulope
,
Omoregie, Esosa
,
Cutler, Christopher P.
in
Alternative splicing
,
Amino Acid Sequence
,
Animals
2024
The original UT-1 transporter gene was initially identified in the spiny dogfish (Squalus acanthias), but localization of the UT-1 protein was not determined. Subsequent UT-1 expression was shown to localize to the collecting tubule (CT) of the shark nephron in other shark species, with expression in a closely related chimaera species also located additionally at a lower level in the intermediate-I segment (IS-I) of the nephron. In spiny dogfish, two UT-1 splice variants are known (UT-1 long and short), and there was also a second UT-1 gene described (here termed Brain UT). In this study, a second splice variant of the second Brain UT gene was discovered. Expression profiles (mRNA) of UT-1 long and short and Brain UT were determined in a number of spiny dogfish tissues. Quantitative PCR in kidney samples showed that the level of the short variant of UT-1 was around 100 times higher than the long variant, which was itself expressed around 10 times higher than Brain UT cDNA/mRNA (in kidney). For the long variant, there was a significantly higher level of mRNA abundance in fish acclimatized to 75% seawater. Ultimately, three UT-1 antibodies were made that could bind to both the UT-1 short and long variant proteins. The first two of these showed bands of appropriate sizes on Western blots of around 52.5 and 46 kDa. The second antibody had some additional lower molecular weight bands. The third antibody was mainly bound to the 46 kDa band with faint 52.5 kDa staining. Both the 52.5 and 46 kDa bands were absent when the antibodies were pre-blocked with the peptide antigens used to make them. Across the three antibodies, there were many similarities in localization but differences in subcellular localization. Predominantly, antibody staining was greatest in the intermediate segment 1 (IS-I) and proximal (PIb) segments of the first sinus zone loop of the nephron, with reasonably strong expression also found at the start and middle of the late distal tubule (LDT; second sinus zone loop). While some expression in the collecting tubule (CT) could not be ruled out, the level of staining seemed to be low or non-existent in convoluted bundle zone nephron segments such as the CT. Hence, this suggests that spiny dogfish have a fundamentally different mode of urea absorption in comparison to that found in other shark species, potentially focused more on the nephron sinus zone loops than the CT.
Journal Article
Description of a new deep-water dogfish shark from Hawaii, with comments on the Squalus mitsukurii species complex in the West Pacific
2018
Dogfish sharks of the genus Squalus are small, deep-water sharks with a slow rate of molecular evolution that has led to their designation as a series of species complexes, with low between-species diversity relative to other taxa. The largest of these complexes is named for the Shortspine spurdog ( Squalusmitsukurii Jordan & Snyder), a medium-sized dogfish shark common to warm upper slope and seamount habitats, with a putative circumglobal distribution that has come under investigation recently due to geographic variation in morphology and genetic diversity. The Hawaiian population of Squalusmitsukurii was examined using both morphological and molecular analyses, putting this group in an evolutionary context with animals from the type population in Japan and closely-related congeners. External morphology differs significantly between the Hawaiian and Japanese S.mitsukurii , especially in dorsal fin size and relative interdorsal length, and molecular analysis of 1,311 base pairs of the mitochondrial genes ND2 and COI show significant, species-level divergence on par with other taxonomic studies of this genus. The dogfish shark in Hawaii represents a new species in the genus, and the name Squalushawaiiensis , the Hawaiian spurdog, is designated after the type location.
Journal Article
Localization and Expression of Aquaporin 1 (AQP1) in the Tissues of the Spiny Dogfish (Squalus acanthias)
by
Cutler, Christopher P.
,
MacIver, Bryce
in
Amino Acid Sequence
,
Animals
,
Aquaporin 1 - genetics
2025
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version of the mRNA/protein (AQP1SV1/AQP1SV1). Polymerase chain reaction (PCR) in a range of tissues showed AQP1 to be expressed at very high levels in the rectal gland with ubiquitous mRNA expression at lower levels in other tissues. Northern blotting showed that AQP1 had a mRNA size of 5.3 kb in kidney total RNA. The level of AQP1 mRNA was significantly lower in the rectal glands of fish acclimated to 120% seawater (SW; vs. 75% SW (p = 0.0007) and 100% SW (p = 0.0025)) but was significantly higher in those fish in the kidney (vs. 100% SW (p = 0.0178)) and intestine (vs. 75% SW (p= 0.0355) and 100% SW (p = 0.0285)). Quantitative PCR determined that AQP1SV1 mRNA levels were also significantly lower in the rectal glands of both 120% (p = 0.0134) and 100% SW (p = 0.0343) fish in comparison to 75% SW-acclimated dogfish. Functional expression in Xenopus oocytes showed that AQP1 exhibited significant apparent membrane water permeability (p = 0.000008–0.0158) across a range of pH values, whereas AQP1SV1 showed no similar permeability. Polyclonal antibodies produced against AQP1 (AQP1 and AQP1/2 antibodies) and AQP1SV1 had bands at the expected sizes of 28 kDa and 24 kDa, respectively, as well as some other banding. The weak AQP1 antibody and the stronger AQP1/2 antibody exhibited staining in the apical membranes of rectal gland secretory tubules, particularly towards the periphery of the gland. In the gill, the AQP1/2 antibody in particular showed staining in secondary-lamellar pavement-cell basal membranes, and in blood vessels and connective tissue in the gill arch. In the spiral valve intestine side wall and valve flap, the AQP1/2 antibody stained muscle tissue and blood vessel walls and, after tyramide signal amplification, showed some staining in the apical membranes of epithelial cells at the ends of the luminal surface of epithelial folds. In the rectum/colon, there was also some muscle and blood vessel staining, but the AQP1 and AQP1/2 antibodies both stained a layer of cells at the base of the surface epithelium. In the kidney convoluted bundle zone, all three antibodies stained bundle sheath membranes to variable extents, and the AQP1/2 antibody also showed staining in the straight bundle zone bundle sheath. In the kidney sinus zone, the AQP1/2 antibody stained the apical membranes of late distal tubule (LDT) nephron loop cells most strongly, with the strongest staining in the middle of the LDT loop and in patches towards the start of the LDT loop. There was also a somewhat less strong staining of segments of the first sinus zone nephron loop, particularly in the intermediate I (IS-I) tubule segment. Some tubules appeared to show no or only low levels of staining. The results suggest that AQP1 plays a role in rectal gland fluid secretion, kidney fluid reabsorption and gill pavement-cell volume regulation and probably a minor role in intestinal/rectal/colon fluid absorption.
Journal Article
Sustained endocrine and exocrine function in the pancreas of the Pacific spiny dogfish post-feeding
by
Fehrmann, Frauke
,
Anderson, W. Gary
,
Weinrauch, Alyssa M
in
Abundance
,
Body weight
,
Carboxypeptidase
2022
Abstract Secretions of the exocrine pancreas contain digestive enzymes integral to the digestive process. The Pacific spiny dogfish (Squalus suckleyi) has a discrete pancreas, divided into two lobes termed the dorsal and ventral lobes. These lobes drain into the anterior intestine via a common duct to enable digestion. Previous studies have identified that the exocrine pancreas produces (co)lipases, chymotrypsin, carboxypeptidase, and low levels of chitinases; however, investigations into other digestive enzymes are limited. We detect the presence of lipase, trypsin, and carbohydrase and show that activities are equivalent between both lobes of the pancreas. Additionally, we sought to investigate the influence of a single feeding event (2% body weight ration of herring by gavage) on enzyme activities over an extended time course (0, 20, 48, 72, 168 h) post-feeding. The results indicate that there are no differences in pancreatic tissue digestive enzyme activities between fed or fasted states. Analysis of acinar cell circumference post-feeding demonstrates a significant increase at 20 and 48 h, that returns to fasting levels by 72 h. No significant changes were observed regarding whole-tissue insulin or glucagon mRNA abundance or with glucose transporter (glut) 1 or 3. Yet, a significant and transient decrease in glut4 and sodium glucose-linked transporter mRNA abundance was found at 48 h post-feeding. We propose that the constant enzyme activity across this relatively large organ, in combination with a relatively slow rate of digestion leads to an evenly distributed, sustained release of digestive enzymes regardless of digestive state.
Journal Article
Untangling the systematic dilemma behind the roughskin spurdog Cirrhigaleus asper (Merrett, 1973) (Chondrichthyes: Squaliformes), with phylogeny of Squalidae and a key to Cirrhigaleus species
2023
Cirrhigaleus comprises a small genus of rare barbel-bearing dogfish sharks with distributions in limited regions of all oceans. Generic validity and taxonomic status of some species are upon controversies by morphological and molecular evidence that often suggest reallocation of Cirrhigaleus species into the genus Squalus . Particularly, the roughskin spurdog C . asper exhibits intermediary morphological characteristics within Squalidae that requires clarification. In the present study, a phylogenetic approach was undertaken to test the correct generic placement of C . asper using novel and revised morphological characters. We performed maximum parsimony analysis of 51 morphological characters of the internal (e.g., neurocranium, clasper cartilages, pectoral and pelvic girdles) and external anatomy applied to 13 terminal taxa. Cirrhigaleus represents a valid genus and it is supported by eight synapomorphies: high number of monospondylous vertebrae; medial nasal lobe supported by fleshy core and innervated by the buccopharyngeal branch of the facial nerve; neurocranium with greatest width across nasal capsules; one facet and one condyle in the puboischiadic bar for articulating with the basipterygium; two intermediate segments between the basipterygium of the pelvic fin and the axial cartilage of the claspers; five terminal clasper cartilages; and posterior medial process of the puboischiadic bar absent. Cirrhigaleus asper is sister-species to a small clade comprising C . barbifer and C . australis which is supported by one synapomorphy, presence of conspicuous cusplets in the dermal denticles. Cirrhigaleus barbifer , C . asper and C . australis are redescribed herein and the neotype of C . barbifer is designated. A key to Cirrhigaleus species is also given and the inner relationships within Squalus is tentatively discussed.
Journal Article
Spiny dogfish, Squalus suckleyi, shows a good tolerance for hypoxia but need long recovery times
by
Wood, Chris M
,
Laukens, Kris
,
Vu, Trung Nghia
in
Acid-base regulation
,
Amino acids
,
Bioindicators
2024
Pacific spiny dogfish tolerate low oxygen levels relatively well but show large individual variation in coping strategy (oxyregulators versus oxyconformers). Lactate, a classic indicator of anaerobic metabolism, reflected the onset of hypoxia but was not a good biomarker of the recovery time needed.
Abstract
Pacific spiny dogfish, Squalus suckleyi, move to shallow coastal waters during critical reproductive life stages and are thus at risk of encountering hypoxic events which occur more frequently in these areas. For effective conservation management, we need to fully understand the consequences of hypoxia on marine key species such as elasmobranchs. Because of their benthic life style, we hypothesized that S. suckleyi are hypoxia tolerant and able to efficiently regulate oxygen consumption, and that anaerobic metabolism is supported by a broad range of metabolites including ketones, fatty acids and amino acids. Therefore, we studied oxygen consumption rates, ventilation frequency and amplitude, blood gasses, acid–base regulation, and changes in plasma and tissue metabolites during progressive hypoxia. Our results show that critical oxygen levels (Pcrit) where oxyregulation is lost were indeed low (18.1% air saturation or 28.5 Torr at 13°C). However, many dogfish behaved as oxyconformers rather than oxyregulators. Arterial blood PO2 levels mostly decreased linearly with decreasing environmental PO2. Blood gases and acid–base status were dependent on open versus closed respirometry but in both set-ups ventilation frequency increased. Hypoxia below Pcrit resulted in an up-regulation of anaerobic glycolysis, as evidenced by increased lactate levels in all tissues except brain. Elasmobranchs typically rely on ketone bodies as oxidative substrates, and decreased concentrations of acetoacetate and β-hydroxybutyrate were observed in white muscle of hypoxic and/or recovering fish. Furthermore, reductions in isoleucine, glutamate, glutamine and other amino acids were observed. After 6 hours of normoxic recovery, changes persisted and only lactate returned to normal in most tissues. This emphasizes the importance of using suitable bioindicators adjusted to preferred metabolic pathways of the target species in conservation physiology. We conclude that Pacific spiny dogfish can tolerate severe transient hypoxic events, but recovery is slow and negative impacts can be expected when hypoxia persists.
Journal Article
Blood and Gill Carbonic Anhydrase in the Context of a Chondrichthyan Model of CO 2 Excretion
by
Harter, Till S.
,
Brauner, Colin J.
,
Wilson, Jonathan M.
in
Animals
,
Carbon Dioxide - metabolism
,
Carbonic Anhydrases - blood
2019
Pacific spiny dogfish (
) have been widely used as a representative species for chondrichthyan CO
excretion. Pacific spiny dogfish have a slower red blood cell (RBC) carbonic anhydrase (CA) isoform than teleost fishes, extracellular CA activity, no endogenous plasma CA inhibitor, and plasma-accessible CA IV at the gills. Thus, both the RBC and plasma compartments contribute to bicarbonate ion (
) dehydration at the gills for CO
excretion in contrast to teleost fishes, in which
dehydration is restricted to RBCs. We compared CA activity levels, subcellular localization, and presence of plasma CA inhibitors in the blood and gills of 13 chondrichthyans to examine the hypothesis that the dogfish model of CO
excretion applies broadly to chondrichthyans. In general, blood samples from the 12 other chondrichthyans examined had lower RBC CA activity than teleosts, some extracellular CA activity, and no endogenous plasma CA inhibitor. While type IV-like membrane-associated CA was found in the gills in all four of the chondrichthyans examined,
had three times more CA activity (
μmol CO
min
mg protein
) in the microsomal (membrane) fraction of gills than the other three. In addition, unexpected variation in CA characteristics was observed between chondrichthyan species. Thus, in general, it appears that the pattern of CA distribution in fishes can be generally categorized as either chondrichthyan or teleost models. However, further studies should examine the functional significance of the within-chondrichthyan differences we observed and investigate whether CO
excretion patterns exist along a continuum or in discrete groups.
Journal Article
A new record of Squalus montalbani (Chondrichthyes: Squaliformes: Squalidae) from the Nansha (Spratly) Islands, South China Sea
2023
The Indonesian greeneye spurdog (or a dogfish shark), Squalus montalbani Whitley, 1931, is widely distributed in the warm temperate to tropical waters of Indonesia, Philippines, the island of Taiwan, and Australia. Previous studies suggested that the distribution of dogfish shark species in the South China Sea is composed of two species, Squalus mitsukurii Jordan et Snyder, 1903 and Squalus brevirostris Tanaka, 1917. In March 2020 a dogfish shark specimen was collected from the Nansha (Spratly) Islands, South China Sea. We identified it as S. montalbani based on morphology and mitochondrial DNA barcoding. Our results confirmed the presence of S. montalbani in the South China Sea, leading us to conclude that it represents a new species record of the genus Squalus in the region. Furthermore, our findings demonstrate that the combined approach is highly effective in identifying Squalus species that share similar morphological characteristics.
Journal Article