Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
31,674 result(s) for "Stable isotopes"
Sort by:
Studying animal niches using bulk stable isotope ratios
The development of the isotopic niche, an n-dimensional hypervolume (with n being the number of isotopes) occupied by a population in delta space, has revolutionized the study of animal interactions in wild populations. While the isotopic niche offers a useful means to understand interactions at many ecological resolutions (e.g., individual, population, community, ecosystem), a variety of intrinsic and extrinsic factors drive isotopic variability and influence the ultimate geometry of observed niche dimensions. Here, we provide an updated synthesis to guide the application of bulk stable isotope ratios to study ecological niches. We summarize progress in the application of bulk stable isotope ratios for evaluating niches to synthesize a formal definition of the isotopic niche. We identify six broad categories to describe drivers of isotopic variance introduced by the animal, its environment, and the researcher, and provide recommendations to account for such variations before, during, and after sample collection and data analyses. Our synthesis illustrates the considerations that should be made before employing the isotopic niche to broader ecological contexts, and offers guidance for the use and interpretation of isotopic niche dynamics in future studies.
Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years
Asian summer monsoon (ASM) variability and its long-term ecological and societal impacts extending back to Neolithic times are poorly understood due to a lack of high-resolution climate proxy data. Here, we present a precisely dated and well-calibrated treering stable isotope chronology from the Tibetan Plateau with 1- to 5-y resolution that reflects high- to low-frequency ASM variability from 4680 BCE to 2011 CE. Superimposed on a persistent drying trend since the mid-Holocene, a rapid decrease in moisture availability between ∼2000 and ∼1500 BCE caused a dry hydroclimatic regime from ∼1675 to ∼1185 BCE, with mean precipitation estimated at 42 ± 4% and 5 ± 2% lower than during themid-Holocene and the instrumental period, respectively. This second-millennium–BCE megadrought marks the mid-to late Holocene transition, during which regional forests declined and enhanced aeolian activity affected northern Chinese ecosystems. We argue that this abrupt aridification starting ∼2000 BCE contributed to the shift of Neolithic cultures in northern China and likely triggered human migration and societal transformation.
Unifying error structures in commonly used biotracer mixing models
Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet.
The Complexity of Moisture Sources Affects the Altitude Effect of Stable Isotopes of Precipitation in Inland Mountainous Regions
From a global perspective, the stable isotope altitude effect is crucial for understanding climate information. However, the intensity of this effect can be influenced by the source of moisture, particularly in inland mountainous regions where the moisture sources are complex. Different combinations of moisture sources might affect the altitude effect. Focusing on the upper Shiyang River in the northern part of the Qilian Mountains in China, this study calculated the proportion of recycled moisture in precipitation and utilized the HYSPLIT model to determine the source of advective moisture. It explored the characteristics and mechanisms by which moisture sources affect the spatiotemporal variations in precipitation isotope effects within the study area. The findings indicated that: (a) The altitude effect follows a seasonal pattern: winter < autumn < spring < summer, with a reverse effect in winter. (b) As the contribution of recycled moisture to precipitation increases, the altitude effect of stable isotopes weakens, primarily due to the disruptive influence of recycled moisture on this effect. (c) The altitude effect of stable isotopes in precipitation is determined by the direction of the moisture source and its attributes. When the primary source of advective moisture runs perpendicular to the mountain range and the moisture migration speed is slow, the altitude effect is pronounced. Thus, although temperature directly causes the altitude effect, water vapor sources significantly influence it in inland mountainous regions. Key Points The altitude effect has significant seasonal variation, being strong in summer and weakest in winter The contribution of recirculating water vapor to precipitation is large, weakening the altitude effect The source of water vapor and the nature of the air masses contribute to the differences in elevation effects
Multiple lines of evidence of early goose domestication in a 7,000-y-old rice cultivation village in the lower Yangtze River, China
Poultry are farmed globally, with chicken (Gallus gallus domesticus) being the leading domesticated species. Although domestic chicken bones have been reported from some Early Holocene sites, their origin is controversial and there is no reliable domestic chicken bone older than the Middle Holocene. Here, we studied goose bones from Tianluoshan—a 7,000-y-old rice cultivation village in the lower Yangtze River valley, China—using histological, geochemical, biochemical, and morphological approaches. Histological analysis revealed that one of the bones was derived from a locally bred chick, although no wild goose species breed in southern China. The analysis of oxygen-stable isotope composition supported this observation and further revealed that some of the mature bones were also derived from locally bred individuals. The nitrogen-stable isotope composition showed that locally bred mature birds fed on foods different from those eaten by migrant individuals. Morphological analysis revealed that the locally bred mature birds were homogenous in size, whereas radiocarbon dating clearly demonstrated that the samples from locally bred individuals were ∼7,000 y old. The histological, geochemical, biochemical, morphological, and contextual evidence suggest that geese at Tianluoshan village were at an early stage of domestication. The goose population appears to have been maintained for several generations without the introduction of individuals from other populations and may have been fed cultivated paddy rice. These findings indicate that goose domestication dates back 7,000 y, making geese the oldest domesticated poultry species in history.
Species invasion progressively disrupts the trophic structure of native food webs
Species invasions can have substantial impacts on native species and ecosystems, with important consequences for biodiversity. How these disturbances drive changes in the trophic structure of native food webs through time is poorly understood. Here, we quantify trophic disruption in freshwater food webs to invasion by an apex fish predator, lake trout, using an extensive stable isotope dataset across a natural gradient of uninvaded and invaded lakes in the northern Rocky Mountains, USA. Lake trout invasion increased fish diet variability (trophic dispersion), displaced native fishes from their reference diets (trophic displacement), and reorganized macroinvertebrate communities, indicating strong food web disruption. Trophic dispersion was greatest 25 to 50 y after colonization and dissipated as food webs stabilized in later stages of invasion (>50 y). For the native apex predator, bull trout, trophic dispersion preceded trophic displacement, leading to their functional loss in late-invasion food webs. Our results demonstrate how invasive species progressively disrupt native food webs via trophic dispersion and displacement, ultimately yielding biological communities strongly divergent from those in uninvaded ecosystems.
Analyzing mixing systems using a new generation of Bayesian tracer mixing models
The ongoing evolution of tracer mixing models has resulted in a confusing array of software tools that differ in terms of data inputs, model assumptions, and associated analytic products. Here we introduce MixSIAR, an inclusive, rich, and flexible Bayesian tracer (e.g., stable isotope) mixing model framework implemented as an open-source R package. Using MixSIAR as a foundation, we provide guidance for the implementation of mixing model analyses. We begin by outlining the practical differences between mixture data error structure formulations and relate these error structures to common mixing model study designs in ecology. Because Bayesian mixing models afford the option to specify informative priors on source proportion contributions, we outline methods for establishing prior distributions and discuss the influence of prior specification on model outputs. We also discuss the options available for source data inputs (raw data versus summary statistics) and provide guidance for combining sources. We then describe a key advantage of MixSIAR over previous mixing model software—the ability to include fixed and random effects as covariates explaining variability in mixture proportions and calculate relative support for multiple models via information criteria. We present a case study of Alligator mississippiensis diet partitioning to demonstrate the power of this approach. Finally, we conclude with a discussion of limitations to mixing model applications. Through MixSIAR, we have consolidated the disparate array of mixing model tools into a single platform, diversified the set of available parameterizations, and provided developers a platform upon which to continue improving mixing model analyses in the future.
Aquatic and terrestrial resources are not nutritionally reciprocal for consumers
Aquatic and terrestrial ecosystems are connected through reciprocal fluxes of energy and nutrients that can subsidize consumers. Past research on reciprocal aquatic–terrestrial subsidies to consumers has generally focused on subsidy quantity while ignoring major differences in the nutritional composition of aquatic and terrestrial resources. Because aquatic resources contain substantially more highly unsaturated omega‐3 fatty acids (HUFAs) than terrestrial resources, aquatic subsidies may play a unique role by supplying these critical compounds to both aquatic and terrestrial consumers. Here, we first characterized nutritional quality in terms of HUFA content in aquatic and terrestrial insect prey. We then used bulk stable isotope analyses to estimate subsidy use by stream and riparian consumers coupled with compound‐specific stable isotope analyses, which allowed us to document consumer HUFA sources. Finally, in order to understand the nutritional importance of aquatic‐derived HUFAs for riparian consumers, we conducted manipulative diet experiments on Eastern Phoebe (Sayornis phoebe) chicks in the laboratory. Aquatic insects were significantly enriched in HUFAs, mainly in terms of eicosapentaenoic acid (EPA), compared with terrestrial insects. Stream fishes relied mainly upon aquatic resources, while insectivorous birds varied in their use of aquatic subsidies across sites. However, like stream fishes, Eastern Phoebe chicks received HUFAs from aquatic insects, even when they were heavily reliant upon terrestrial insects for their overall diet. In the laboratory, dietary HUFAs, such as those supplied by aquatic insects, increased the growth rate and condition of Eastern Phoebe chicks. This study demonstrates that aquatic and terrestrial subsidies are not nutritionally reciprocal from the perspective of consumers because aquatic resources are the main source of critical fatty acids for both stream and riparian consumers. It also confirms previous findings on the nutritional importance of HUFAs for riparian birds, demonstrating that an insectivorous riparian lifestyle influences avian nutritional needs. Finally, our findings raise the possibility that birds and other riparian insectivores may experience nutritional mismatches with terrestrial prey if they do not have access to high‐quality aquatic subsidies as a consequence of aquatic habitat degradation or shifts in consumer and resource phenology. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
Intraspecific variation and energy channel coupling within a Chilean kelp forest
The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this “multichannel” feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13C and δ15N for >120 samples; of these we analyzed δ13C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual consumer and species using a bootstrap-resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13–67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting-edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems.