Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,103 result(s) for "Standing Position"
Sort by:
A guide to active working in the modern office : homo sedens in the 21st century
\"This is a short guide on sit-stand working in the office. It reviews the research on sitting and standing at work from the 1950s to present, and provides guidance for specialists, therapists, practitioners, and managers. The book is illustrated with many photos and figures and is understandable to the layman as well as the specialist. With the increased emphasis on healthy lifestyles, coupled with the obesity and overweight epidemic, many are claiming that we should spend more time standing at work. Some have even claimed that sitting is the new smoking. Readers of the book will learn and understand what is behind these claims, what stacks-up, what doesn't, and be able to make informed decisions about whether to invent in new facilities, and what to invest. This book is of value to human factors specialists, physical therapists, chiropractors and occupational health practitioners, architects, and facilities managers\"-- Provided by publisher.
Difference in whole spinal alignment between supine and standing positions in patients with adult spinal deformity using a new comparison method with slot-scanning three-dimensional X-ray imager and computed tomography through digital reconstructed radiography
Background A precise comparison of supine and standing whole spine alignment in both the coronal and sagittal planes, including the pelvic parameters, has not been reported. Furthermore, previous studies investigated positional differences in the Cobb angle only in young patients with idiopathic scoliosis. The difference in alignment has never been investigated in a population of patients with adult spinal deformity (ASD). In most cases, ASD patients are aware of the symptoms when standing and tend to stoop with back pain, whereas the symptoms disappear when lying on a bed. Therefore, it is important to elucidate the positional differences in the deformity in older adults. The purposes of this study are to establish a method for comparing whole spine alignment between supine and standing, and to clarify the positional difference of the alignment in the patients with ASD. Methods Twenty-four patients with ASD (mean age: 60.1 years, range 20–80 years; 24 women) were evaluated. A slot-scanning three-dimensional X-ray imager (EOS) was used to assess the whole spine in the standing position. Computed tomography was used to assess the whole spine in the supine position. The computed tomography DICOM dataset of the whole spine in the supine position was transformed to two-dimensional (coronal and sagittal) digital reconstructed radiography images. The digital reconstructed radiography images were input for three-dimensional measurement by the EOS software and compared with the standing whole spine alignment measured by EOS. Results The mean intraclass correlation coefficients (supine, standing) of intra-rater / inter-rater reliabilities for the measured parameters were 0.981, 0.984 / 0.970, 0.986, respectively. The Cobb and rotation angles of the major curve, mostly the thoracolumbar area, were significantly greater in the standing position than in the supine position. Lumbar lordosis during standing was significantly kyphotic. With respect to the pelvic parameters, the sacral slope was significantly smaller in the standing position than in the supine position. Pelvic tilt and pelvic incidence were significantly greater in the standing position than in the supine position. Conclusions The lumbar to pelvic parameters and the major curve in standing position significantly deteriorate compared with the supine position in patients with ASD.
Weight-shifting-based robot control system improves the weight-bearing rate and balance ability of the static standing position in hip osteoarthritis patients: a randomized controlled trial focusing on outcomes after total hip arthroplasty
After a total hip arthroplasty (THA), standing and walking balance are greatly affected in the early stages of recovery, so it is important to increase the weight-bearing amount (WBA) on the operated side. Sometimes, traditional treatments may not be enough to improve WBA and weight-bearing ratio (WBR) on the operated side in a satisfactory way. To solve this problem, we came up with a new weight-shifting-based robot control system called LOCOBOT. This system can control a spherical robot on a floor by changing the center of pressure (COP) on a force-sensing board in rehabilitation after THA. The goal of this study was to find out how rehabilitation with the LOCOBOT affects the WBR and balance in a static standing position in patients with unilateral hip osteoarthritis (OA) who had a primary uncemented THA. This randomized controlled trial included 20 patients diagnosed with Kellgren-Lawrence (K-L) grade 3 or 4 hip OA on the operative side and K-L grade 0 normal hip on the nonoperative side. We used the minimization method for allocation and randomly assigned patients to either the LOCOBOT group or the control group. As a result, 10 patient seach were randomly assigned to the LOCOBOT and control groups. Both groups received 40 min of rehabilitation treatment. Out of the 40 min, the LOCOBOT group underwent treatment for 10 min with LOCOBOT. The control group performed COP-controlled exercises on a flat floor instead of using LOCOBOT for 10 of the 40 min. All theoutcome measures were performed pre-THA and 11.9 ± 1.6 days after THA (12 days after THA). The primary outcome measure included WBR in the static standing position. After12 days of THA, the LOCOBOT group exhibited significantly higher mean WBR and WBA (operated side) values than the control group. Furthermore, the LOCOBOT group exhibited significantly lower mean WBA (non-operated side) and outer diameter area (ODA) values than the control group. From pre-THA to 12 days after THA, the LOCOBOT group exhibited a significant improvement in mean WBR and WBA (operated side). Moreover, the mean WBA (non-operated side) and ODA significantly decreased. From pre-THA to 12 days after THA, the control group showed a significant increase in total trajectory length and ODA. The most important finding of this study was that patients were able to perform the LOCOBOT exercise as early as the second day after THA, and that WBR and ODA significantly improved by the 12th day after THA. This result demonstrated that the LOCOBOT effectively improves WBR in a short period of time after THA and is a valuable system for enhancing balance ability. This expedites the acquisition of independence in activities of daily living after THA and may contribute to optimizing the effectiveness of medical care.
Effect of intrinsic foot muscles training on foot function and dynamic postural balance: A systematic review and meta-analysis
This systematic review aimed to analyse the effects of intrinsic foot muscle (IFM) training on foot function and dynamic postural balance. Keywords related to IFM training were used to search four databases (PubMed, CINAHL, SPORTDiscus and Web of Science databases.) for relevant studies published between January 2011 and February 2021. The methodological quality of the intervention studies was assessed independently by two reviewers by using the modified Downs and Black quality index. Publication bias was also assessed on the basis of funnel plots. This study was registered in PROSPERO (CRD42021232984). Sixteen studies met the inclusion criteria (10 with high quality and 6 with moderate quality). Numerous biomechanical variables were evaluated after IFM training intervention. These variables included IFM characteristics, medial longitudinal arch morphology and dynamic postural balance. This systematic review demonstrated that IFM training can exert positive biomechanical effects on the medial longitudinal arch, improve dynamic postural balance and act as an important training method for sports enthusiasts. Future studies should optimise standardised IFM training methods in accordance with the demands of different sports.
Pick me up. Stand and stretch
Stand and Stretch is a course in the Pick Me Up Series, designed to help you learn some simple stretching to include in your work day. The benefits of stretching your body are real and have been practiced around the world for centuries. As movement mentor Mike demonstrates, six minutes' mindful stretching each day includes neck stretches, shoulder rolls, back stretching, quad stretches, shaking wrists and rotating hands. Stand and Stretch is easy to follow and motivating. Mike's magic stretch moves literally put you on the path to better physical and mental-emotional health. They are not a quick fix to making you fit, but help you resume what your body was designed to be: more flexible, stronger and more coordinated. Through regular stretching, you will improve your range of motion and thereby your flexibility. You will boost your mental health and productivity.
Ankle strategies for step-aside movement during quiet standing
The mediolateral ankle strategy plays a crucial role in providing ankle stability in ground obstacle-avoidance behavior. This is achieved by changing basic walking patterns according to the characteristics of the obstacle. In daily life, it is more common to use step-aside movement (i.e., dodging step) for collision avoidance rather than side-stepping (i.e., widening standing base) when encountering an approaching pedestrian or bicycle. While studies have been conducted on the mediolateral ankle strategy contribution in obstacle avoidance using side-stepping, knowledge of step-aside movement is still inadequate. Therefore, we conducted an electromyography (EMG) analysis on the tibialis anterior (TA), peroneus longus (PL), and soleus (SOL) muscles, as well as measured center of pressure (CoP) displacement, and vertical ground reaction force (vGRF) of the standing leg, in order to understand the role of ankle muscles in step-aside movement during quiet standing. Fifteen healthy young men repeated twelve step-aside movements in both left and right directions. A Bayesian one-sample t-test was used to determine the sufficient step and participant counts. Multiple linear regression analysis was used to investigate the correlation between the muscle activity and CoP displacement or vGRF. The regression coefficients (β) of the left push phase and the right loading phase were tested against zero using a Bayesian one-sample t-test to identify the correlation between independent and dependent variables. We used the one-dimensional statistical parametric mapping (SPM1d) method to analyze the differences between and within the groups of EMG data based on the continuous time series. The results showed that the PL displayed a substantial contribution to the mediolateral ankle strategy during the push phase of step-aside movement, and also contributed to maintaining ankle stability during the loading phase. This suggested that screening for PL weakness and providing appropriate interventions and/or training approaches is especially critical for populations with walking stability problems.
Relationship between thigh muscle cross-sectional areas and single leg stand-up test in Japanese older women
In older adults, the quantitative decline of the quadriceps femoris is associated with the augmentation of difficulty in the execution of a stand-up task. However, it is unclear whether the cross-sectional areas (CSAs) of individual thigh muscles differ between older adults who can stand up from a 40-cm-height chair on a single leg and those who cannot. To investigate this, the present study determined the CSAs of individual mid-thigh muscles in 67 Japanese women aged 60-77 years by using a magnetic resonance imaging method. Participants were asked to stand up from a 40-cm-height chair on a single leg, and those who could and could not stand up without leaning back and maintain a standing posture for 3 seconds on a single leg were allocated into the successful group (SG, n = 40) and unsuccessful group (USG, n = 27), respectively. Only the CSA of the adductors (sum of the adductor longus and adductor magnus) was significantly smaller in USG compared to SG. When CSA was expressed relative to the two-third power of body mass, the values for the four heads of the quadriceps femoris and biceps femoris long head, as well as the adductors, were significantly lower in USG than in SG. The current results indicate that in terms of the value relative to body mass, the reduced CSAs of the adductors and biceps femoris long head, as well as the four heads of the quadriceps femoris, are associated with the failure of attempts to stand up from a 40-cm-height chair on a single leg in older women. This may be due to the anatomical function of the two muscle groups, which contributes to hip extension movement involved in transitioning from a sitting position to a standing position during the stand-up task.