Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
18,579 result(s) for "Staphylococcal infections"
Sort by:
The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis
Invasive community-onset staphylococcal disease has emerged worldwide associated with Panton-Valentine leucocidin (PVL) toxin. Whether PVL is pathogenic or an epidemiological marker is unclear. We investigate the role of PVL in disease, colonisation, and clinical outcome. We searched Medline and Embase for original research reporting the prevalence of PVL genes among Staphylococcus aureus pneumonia, bacteraemia, musculoskeletal infection, skin and soft-tissue infection, or colonisation published before Oct 1, 2011. We calculated odds ratios (ORs) to compare patients with PVL-positive colonisation and each infection relative to the odds of PVL-positive skin and soft-tissue infection. We did meta-analyses to estimate odds of infection or colonisation with a PVL-positive strain with fixed-effects or random-effects models, depending on the results of tests for heterogeneity. Of 509 articles identified by our search strategy, 76 studies from 31 countries met our inclusion criteria. PVL strains are strongly associated with skin and soft-tissue infections, but are comparatively rare in pneumonia (OR 0·37, 95% CI 0·22–0·63), musculoskeletal infections (0·44, 0·19–0·99), bacteraemias (0·10, 0·06–0·18), and colonising strains (0·07, 0·01–0·31). PVL-positive skin and soft-tissue infections are more likely to be treated surgically than are PVL-negative infections, and children with PVL-positive musculoskeletal disease might have increased morbidity. For other forms of disease we identified no evidence that PVL affects outcome. PVL genes are consistently associated with skin and soft-tissue infections and are comparatively rare in invasive disease. This finding challenges the view that PVL mainly causes invasive disease with poor prognosis. Population-based studies are needed to define the role of PVL in mild, moderate, and severe disease and to inform control strategies. None.
Staphylococcus aureus Screening and Decolonization in Orthopaedic Surgery and Reduction of Surgical Site Infections
Background Staphylococcus aureus is the most common organism responsible for orthopaedic surgical site infections (SSIs). Patients who are carriers for methicillin-sensitive S. aureus or methicillin-resistant S. aureus (MRSA) have a higher likelihood of having invasive S. aureus infections. Although some have advocated screening for S. aureus and decolonizing it is unclear whether these efforts reduce SSIs. Questions/purposes The purposes of this study were to determine (1) whether S. aureus screening and decolonization reduce SSIs in orthopaedic patients and (2) if implementing this protocol is cost-effective. Methods Studies for this systematic review were identified by searching PubMed, which includes MEDLINE (1946–present), EMBASE.com (1974–present), and the Cochrane Library’s (John Wiley & Sons) Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment Database (HTAD), and the NHS Economic Evaluation Database (NHSEED). Comprehensive literature searches were developed using EMTREE, MeSH, and keywords for each of the search concepts of decolonization, MRSA, and orthopedics/orthopedic surgery. Studies published before 1968 were excluded. We analyzed 19 studies examining the ability of the decolonization protocol to reduce SSIs and 10 studies detailing the cost-effectiveness of S. aureus screening and decolonization. Results All 19 studies showed a reduction in SSIs or wound complications by instituting a S. aureus screening and decolonization protocol in elective orthopaedic (total joints, spine, and sports) and trauma patients. The S. aureus screening and decolonization protocol also saved costs in orthopaedic patients when comparing the costs of screening and decolonization with the reduction of SSIs. Conclusions Preoperative screening and decolonization of S. aureus in orthopaedic patients is a cost-effective means to reduce SSIs. Level of Evidence Level IV, systematic review of Level I–IV studies. See the Guidelines for Authors for a complete description of levels of evidence.
Community-associated meticillin-resistant Staphylococcus aureus
Meticillin-resistant Staphylococcus aureus (MRSA) is endemic in hospitals worldwide, and causes substantial morbidity and mortality. Health-care-associated MRSA infections arise in individuals with predisposing risk factors, such as surgery or presence of an indwelling medical device. By contrast, many community-associated MRSA (CA-MRSA) infections arise in otherwise healthy individuals who do not have such risk factors. Additionally, CA-MRSA infections are epidemic in some countries. These features suggest that CA-MRSA strains are more virulent and transmissible than are traditional hospital-associated MRSA strains. The restricted treatment options for CA-MRSA infections compound the effect of enhanced virulence and transmission. Although progress has been made towards understanding emergence of CA-MRSA, virulence, and treatment of infections, our knowledge remains incomplete. Here we review the most up-to-date knowledge and provide a perspective for the future prophylaxis or new treatments for CA-MRSA infections.
Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU
Background COVID-19 is known as a new viral infection. Viral-bacterial co-infections are one of the biggest medical concerns, resulting in increased mortality rates. To date, few studies have investigated bacterial superinfections in COVID-19 patients. Hence, we designed the current study on COVID-19 patients admitted to ICUs. Methods Nineteen patients admitted to our ICUs were enrolled in this study. To detect COVID-19, reverse transcription real-time polymerase chain reaction was performed. Endotracheal aspirate samples were also collected and cultured on different media to support the growth of the bacteria. After incubation, formed colonies on the media were identified using Gram staining and other biochemical tests. Antimicrobial susceptibility testing was carried out based on the CLSI recommendations. Results Of nineteen COVID-19 patients, 11 (58%) patients were male and 8 (42%) were female, with a mean age of ~ 67 years old. The average ICU length of stay was ~ 15 days and at the end of the study, 18 cases (95%) expired and only was 1 case (5%) discharged. In total, all patients were found positive for bacterial infections, including seventeen Acinetobacter baumannii (90%) and two Staphylococcus aureus (10%) strains. There was no difference in the bacteria species detected in any of the sampling points. Seventeen of 17 strains of Acinetobacter baumannii were resistant to the evaluated antibiotics. No metallo-beta-lactamases -producing Acinetobacter baumannii strain was found. One of the Staphylococcus aureus isolates was detected as methicillin-resistant Staphylococcus aureus and isolated from the patient who died, while another Staphylococcus aureus strain was susceptible to tested drugs and identified as methicillin-sensitive Staphylococcus aureus . Conclusions Our findings emphasize the concern of superinfection in COVID-19 patients due to Acinetobacter baumannii and Staphylococcus aureus . Consequently, it is important to pay attention to bacterial co-infections in critical patients positive for COVID-19.
Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform
Secretion of extracellular vesicles (EVs), a process common to eukaryotes, archae, and bacteria, represents a secretory pathway that allows cell-free intercellular communication. Microbial EVs package diverse proteins and influence the host-pathogen interaction, but the mechanisms underlying EV production in Gram-positive bacteria are poorly understood. Here we show that EVs purified from community-associated methicillin-resistant Staphylococcus aureus package cytosolic, surface, and secreted proteins, including cytolysins. Staphylococcal alpha-type phenol-soluble modulins promote EV biogenesis by disrupting the cytoplasmic membrane; whereas, peptidoglycan cross-linking and autolysin activity modulate EV production by altering the permeability of the cell wall. We demonstrate that EVs purified from a S. aureus mutant that is genetically engineered to express detoxified cytolysins are immunogenic in mice, elicit cytolysin-neutralizing antibodies, and protect the animals in a lethal sepsis model. Our study reveals mechanisms underlying S. aureus EV production and highlights the usefulness of EVs as a S. aureus vaccine platform. Extracellular vesicles (EVs) influence host-pathogen interactions, but EV biogenesis in gram-positive bacteria remains elusive. Here authors characterize EVs from Staphylococcus aureus and show that phenol-soluble modulins and autolysins promote EV biogenesis by disrupting the membrane and cell wall.
Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful modern pathogens. The same organism that lives as a commensal and is transmitted in both health-care and community settings is also a leading cause of bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and hospital-acquired infections. Genetically diverse, the epidemiology of MRSA is primarily characterized by the serial emergence of epidemic strains. Although its incidence has recently declined in some regions, MRSA still poses a formidable clinical threat, with persistently high morbidity and mortality. Successful treatment remains challenging and requires the evaluation of both novel antimicrobials and adjunctive aspects of care, such as infectious disease consultation, echocardiography and source control. In this Review, we provide an overview of basic and clinical MRSA research and summarize the expansive body of literature on the epidemiology, transmission, genetic diversity, evolution, surveillance and treatment of MRSA.Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen both within hospitals and in the community. In this Review, Fowler and colleagues provide an overview of basic and clinical MRSA research and explore the epidemiology, transmission, genetic diversity, evolution, surveillance and treatment of MRSA.
An environmental cleaning bundle and health-care-associated infections in hospitals (REACH): a multicentre, randomised trial
The hospital environment is a reservoir for the transmission of microorganisms. The effect of improved cleaning on patient-centred outcomes remains unclear. We aimed to evaluate the effectiveness of an environmental cleaning bundle to reduce health care-associated infections in hospitals. The REACH study was a pragmatic, multicentre, randomised trial done in 11 acute care hospitals in Australia. Eligible hospitals had an intensive care unit, were classified by the National Health Performance Authority as a major hospital (public hospitals) or having more than 200 inpatient beds (private hospitals), and had a health-care-associated infection surveillance programme. The stepped-wedge design meant intervention periods varied from 20 weeks to 50 weeks. We introduced the REACH cleaning bundle, a multimodal intervention, focusing on optimising product use, technique, staff training, auditing with feedback, and communication, for routine cleaning. The primary outcomes were incidences of health-care-associated Staphylococcus aureus bacteraemia, Clostridium difficile infection, and vancomycin-resistant enterococci infection. The secondary outcome was the thoroughness of cleaning of frequent touch points, assessed by a fluorescent marking gel. This study is registered with the Australian and New Zealand Clinical Trial Registry, number ACTRN12615000325505. Between May 9, 2016, and July 30, 2017, we implemented the cleaning bundle in 11 hospitals. In the pre-intervention phase, there were 230 cases of vancomycin-resistant enterococci infection, 362 of S aureus bacteraemia, and 968 C difficile infections, for 3 534 439 occupied bed-days. During intervention, there were 50 cases of vancomycin-resistant enterococci infection, 109 of S aureus bacteraemia, and 278 C difficile infections, for 1 267 134 occupied bed-days. After the intervention, vancomycin-resistant enterococci infections reduced from 0·35 to 0·22 per 10 000 occupied bed-days (relative risk 0·63, 95% CI 0·41–0·97, p=0·0340). The incidences of S aureus bacteraemia (0·97 to 0·80 per 10 000 occupied bed-days; 0·82, 0·60–1·12, p=0·2180) and C difficile infections (2·34 to 2·52 per 10 000 occupied bed-days; 1·07, 0·88–1·30, p=0·4655) did not change significantly. The intervention increased the percentage of frequent touch points cleaned in bathrooms from 55% to 76% (odds ratio 2·07, 1·83–2·34, p<0·0001) and bedrooms from 64% to 86% (1·87, 1·68–2·09, p<0·0001). The REACH cleaning bundle was successful at improving cleaning thoroughness and showed great promise in reducing vancomycin-resistant enterococci infections. Our work will inform hospital cleaning policy and practice, highlighting the value of investment in both routine and discharge cleaning practice. National Health and Medical Research Council (Australia).
Nanoparticle biointerfacing by platelet membrane cloaking
The authors report a new biomimetic nanodelivery platform in which polymeric nanoparticles enclosed in the plasma membrane of human platelets are used for disease-relevant targeting, and the therapeutic potential of the concept is demonstrated in animal models of coronary restenosis and systemic bacterial infection. A new biomimetic nanodelivery platform The properties of blood platelets — small discoid cells that carry out a broad range of functions related to haemostasis — marks them out as prime candidates to form the basis of drug delivery systems. These authors report a new nanoparticle-based delivery platform, in which polymeric nanoparticles are enclosed in the plasma membrane of human platelets. They demonstrate the use of these platelet-membrane cloaked nanoparticles for antibiotic delivery in murine models for cardiovascular disease and systemic bacterial infection. Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems 1 , 2 , 3 . Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates 4 , 5 , 6 , 7 . The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections in Adults and Children: Executive Summary
Evidence-based guidelines for the management of patients with methicillin-resistant Staphylococcus aureus (MRSA) infections were prepared by an Expert Panel of the Infectious Diseases Society of America (IDSA). The guidelines are intended for use by health care providers who care for adult and pediatric patients with MRSA infections. The guidelines discuss the management of a variety of clinical syndromes associated with MRSA disease, including skin and soft tissue infections (SSTI), bacteremia and endocarditis, pneumonia, bone and joint infections, and central nervous system (CNS) infections. Recommendations are provided regarding vancomycin dosing and monitoring, management of infections due to MRSA strains with reduced susceptibility to vancomycin, and vancomycin treatment failures.
Preeminence of Staphylococcus aureus in Infective Endocarditis: A 1-Year Population-Based Survey
Background. Observational studies showed that the profile of infective endocarditis (IE) significantly changed over the past decades. However, most studies involved referral centers. We conducted a population-based study to control for this referral bias. The objective was to update the description of characteristics of IE in France and to compare the profile of community-acquired versus healthcare-associated IE. Methods. A prospective population-based observational study conducted in all medical facilities from 7 French regions (32% of French individuals aged ≥18 years) identified 497 adults with Duke-Li—definite IE who were first admitted to the hospital in 2008. Main measures included age-standardized and sex-standardized incidence of IE and multivariate Cox regression analysis for risk factors of in-hospital death. Results. The age-standardized and sex-standardized annual incidence of IE was 33.8 (95% confidence interval [CI], 30.8-36.9) cases per million inhabitants. The incidence was highest in men aged 75-79 years. A majority of patients had no previously known heart disease. Staphylococci were the most common causal agents, accounting for 36.2% of cases (Staphylococcus aureus, 26.6%; coagulase-negative staphylococci, 9.7%). Healthcare-associated IE represented 26.7% of all cases and exhibited a clinical pattern significantly different from that of community-acquired IE. S. aureus as the causal agent of IE was the most important factor associated with in-hospital death in community-acquired IE (hazard ratio [HR], 2.82 [95% CI, 1.72-4.61]) and the single factor in healthcare-associated IE (HR, 2.54 [95% CI, 1.33-4.85]). Conclusions. S. aureus became both the leading cause and the most important prognostic factor of IE, and healthcare-associated IE appeared as a major subgroup of the disease.