Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,129 result(s) for "Starch - analysis"
Sort by:
Noodles Made from High Amylose Wheat Flour Attenuate Postprandial Glycaemia in Healthy Adults
Previous research has not considered the effect of high amylose wheat noodles on postprandial glycaemia. The aim of the study is to investigate the effect of consumption of high amylose noodles on postprandial glycaemia over 2-h periods by monitoring changes in blood glucose concentration and calculating the total area under the blood glucose concentration curve. Twelve healthy young adults were recruited to a repeated measure randomised, single-blinded crossover trial to compare the effect of consuming noodles (180 g) containing 15%, 20% and 45% amylose on postprandial glycaemia. Fasting blood glucose concentrations were taken via finger-prick blood samples. Postprandial blood glucose concentrations were taken at 15, 30, 45, 60, 90 and 120 min. Subjects consuming high amylose noodles made with flour containing 45% amylose had significantly lower blood glucose concentration at 15, 30 and 45 min (5.5 ± 0.11, 6.1 ± 0.11 and 5.6 ± 0.11 mmol/L; p = 0.01) compared to subjects consuming low amylose noodles with 15% amylose (5.8 ± 0.12, 6.6 ± 0.12 and 5.9 ± 0.12 mmol/L). The total area under the blood glucose concentration curve after consumption of high amylose noodles with 45% amylose was 640.4 ± 9.49 mmol/L/min, 3.4% lower than consumption of low amylose noodles with 15% amylose (662.9 ± 9.49 mmol/L/min), p = 0.021. Noodles made from high amylose wheat flour attenuate postprandial glycaemia in healthy young adults, as characterised by the significantly lower blood glucose concentration and a 3.4% reduction in glycaemic response.
Effect of cooling of cooked white rice on resistant starch content and glycemic response
Cooling of cooked starch is known to cause starch retrogradation which increases resistant starch content. This study aimed to determine the effect of cooling of cooked white rice on resistant starch content and glycemic response in healthy subjects. Resistant starch contents were analyzed on freshly cooked white rice (control rice), cooked white rice cooled for 10 hours at room temperature (test rice I), and cooked white rice cooled for 24 hours at 4 degreesC then reheated (test rice II). The results showed that resistant starch contents in control rice, test rice I, and test rice II were 0.64 g/100 g, 1.30 g/100 g, and 1.65 g/100 g, respectively. Test rice II had higher resistant starch content than test rice I, hence used in the clinical study along with control rice to characterize glycemic response in 15 healthy adults. The clinical study was a randomized, single-blind crossover study. In the clinical study, test rice II significantly lowered glycemic response compared with control rice (125+/-50.1 vs 152+/-48.3 mmol.min/L, respectively; p=0.047). In conclusion, cooling of cooked white rice increased resistant starch content. Cooked white rice cooled for 24 hours at 4 degreesC then reheated lowered glycemic response compared with freshly cooked white rice.
A double-blind randomised controlled trial testing the effect of a barley product containing varying amounts and types of fibre on the postprandial glucose response of healthy volunteers
The aim of the present study was to determine if the consumption of barley tortillas varying in fibre and/or starch composition affected postprandial glucose, insulin, glucagon-like peptide-1 (GLP-1) or peptide YY concentrations. A double-blind, randomised, controlled trial was performed with twelve healthy adults. They each consumed one of five barley tortillas or a glucose drink on six individual visits separated by at least 1 week. Tortillas were made from 100 % barley flour blends using five different milling fractions to achieve the desired compositions. All treatments provided 50 g of available carbohydrate and were designed to make the following comparisons: (1) low-starch amylose (0 %) v. high-starch amylose (42 %) with similar β-glucan and insoluble fibre content; (2) low β-glucan (4·5 g) v. medium β-glucan (7·8 g) v. high β-glucan (11·6 g) with similar starch amylose and insoluble fibre content; and (3) low insoluble fibre (7·4 g) v. high insoluble fibre (19·6 g) with similar starch amylose and β-glucan content. Blood was collected at fasting and at multiple intervals until 180 min after the first bite/sip of the test product. Amylose and insoluble fibre content did not alter postprandial glucose and insulin, but high-β-glucan tortillas elicited a lower glucose and insulin response as compared to the low-β-glucan tortillas. The tortillas with high insoluble fibre had a higher AUC for GLP-1 as compared to the tortillas with low insoluble fibre, whereas amylose and β-glucan content had no effect. Results show that processing methods can be used to optimise barley foods to reduce postprandial blood glucose responses and factors that may influence satiety.
Resistant Starch Contents of Starch Isolated from Black Longan Seeds
A large quantity of longan fruits (Dimocarpus longan Lour.) produced annually are processed into many products, one of which is black longan, from which the dried, dark-brown meat has been used medicinally in traditional medicine, while the starch-containing seeds are discarded. In this study, starch samples (BLGSs) were isolated from seeds of black longan fruits prepared using varied conditions. The in vitro digestibility was determined in comparison with those extracted from fresh (FLGS) and dried (DLGS) seeds. Scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy were employed to evaluate the starch properties. The results showed that the yields of FLGS, DLGS, and BLGSs were 20%, 23%, and 16–22% w/w, respectively. SEM images showed starch granules of mixed shapes, with sizes up to 15 µm in all samples. XRD patterns confirmed an A-type crystallinity for FLGS and DLGS, with strong refraction peaks at 2θ = 15°, 17°, 18°, and 23°, while BLGSs also showed detectable peaks at 2θ = 10° and 21°, which suggested V-type structures. Thermal properties corroborated the changes by showing increases in peak gelatinization temperature (Tp) and enthalpy energy (ΔH) in BLGSs. The paste viscosity of BLGSs (5% w/w) decreased by 20–58% from that of FLGS. The FTIR peak ratio at 1045/1022 and 1022/995 cm−1 also indicated an increase in ordered structure in BLGSs compared to FLGS. The significant increase in the amounts of slowly digestible starch (SDS) and resistant starch (RS) in BLGSs compared to FLGS, especially at a prolonged incubation time of 20 (4.2×) and 30 days (4.1×), was proposed to be due to the heat-induced formation of starch inclusion with other components inside the seed during the black longan production process. Thus, black longan seed could be a new source of starch, with increased RS content, for potential use in the food and related industries.
A Paleolithic diet lowers resistant starch intake but does not affect serum trimethylamine-N-oxide concentrations in healthy women
The Paleolithic diet excludes two major sources of fibre, grains and legumes. However, it is not known whether this results in changes to resistant starch (RS) consumption. Serum trimethylamine-N-oxide (TMAO) is produced mainly from colonic fermentation and hepatic conversion of animal protein and is implicated in CVD, but changes in RS intake may alter concentrations. We aimed to determine whether intake of RS and serum concentrations of TMAO varied in response to either the Paleolithic or the Australian Guide to Healthy Eating (AGHE) diets and whether this was related to changes in food group consumption. A total of thirty-nine women (mean age 47 (sd 13) years, BMI 27 (sd 4) kg/m2) were randomised to AGHE (n 17) or Paleolithic diets (n 22) for 4 weeks. Serum TMAO concentrations were measured using liquid chromatography–MS; food groups, fibre and RS intake were estimated from weighed food records. The change in TMAO concentrations between groups (Paleolithic 3·39 μm v. AGHE 1·19 μm, P = 0·654) did not reach significance despite greater red meat and egg consumption in the Paleolithic group (0·65 serves/d; 95 % CI 0·2, 1·1; P <0·01, and 0·22 serves/d; 95 % CI 0·1, 0·4, P <0·05, respectively). RS intake was significantly lower on the Paleolithic diet (P <0·01) and was not associated with TMAO concentrations. However, the limited data for RS and the small sample size may have influenced these findings. While there were no significant changes in TMAO concentrations, increased meat consumption and reduced RS intake warrant further research to examine the markers of gastrointestinal health of Paleolithic diet followers and to update Australian food databases to include additional fibre components.
Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects
Background The prevalence of obesity is increasing worldwide and prevention is needed. Whole grain has shown potential to lower the risk of obesity, cardiovascular disease and type 2 diabetes. One possible mechanism behind the benefits of whole grain is the gut fermentation of dietary fiber (DF), e.g. non-starch polysaccharides and resistant starch (RS), in whole grain. The purpose of the study is to investigate the effect of whole grain rye-based products on glucose- and appetite regulation. Method Twenty-one healthy subjects were provided four rye-based evening test meals in a crossover overnight study design. The test evening meals consisted of either whole grain rye flour bread (RFB) or a 1:1 ratio of whole grain rye flour and rye kernels bread (RFB/RKB), with or without added resistant starch (+RS). White wheat flour bread (WWB) was used as reference evening meal. Blood glucose, insulin, PYY, FFA, IL-6 as well as breath H 2 and subjective rating of appetite were measured the following morning at fasting and repeatedly up to 3.5 h after a standardized breakfast consisting of WWB. Ad libitum energy intake was determined at lunch, 14.5 h after evening test and reference meals, respectively. Results The evening meal with RFB/RKB + RS decreased postprandial glucose- and insulin responses (iAUC) ( P  < 0.05) and increased the gut hormone PYY in plasma the following morning 0–120 min after the standardized breakfast, compared to WWB ( P  = 0.01). Moreover, RFB increased subjective satiety and decreased desire to eat, and both RFB and RFB/RKB decreased feeling of hunger (AUC 0–210 min). All rye-based evening meals decreased or tended to decrease fasting FFA ( P  < 0.05, RFB/RKB: P  = 0.057) and increased breath hydrogen concentration (0–120 min, P  < 0.001). No effects were noted on energy intake at lunch or inflammatory marker IL-6 (0 + 180 min) after the rye-based evening meals, compared to WWB. Conclusion Whole grain rye bread has the potential to improve cardiometabolic variables in an 11–14.5 h perspective in healthy humans. The combination RFB/RKB + RS positively affected biomarkers of glucose- and appetite regulation in a semi-acute perspective. Meanwhile, RFB and RFB/RKB improved subjective appetite ratings. The effects probably emanate from gut fermentation events. Trial registration The study was registered at: ClinicalTrials.gov, register number NCT02347293 ( www.clinicaltrials.gov/ct2/show/NCT02347293 ). Registered 15 January 2015.
Metabolic response to amylose-rich wheat-based rusks in overweight individuals
Background/objectivesThe amylose-amylopectin ratio influences starch properties. A higher amylose content is associated with slower starch digestion thus reducing the postprandial plasma glucose response and improving the overall postprandial metabolism. So far, limited evidence is available on the metabolic effect of wheat-based foods rich in amylose. This randomised controlled study investigated the acute metabolic effects of amylose-rich wheat-based rusks in overweight subjects focusing on potential mechanisms.Subjects/methodsTen overweight subjects consumed in random order two test meals differing only in the carbohydrate source: rusks prepared with amylose-rich wheat flour (ARR) or conventional wheat flour (control). Blood samples were taken at fasting and over 4 h after the meal. Satiety and intestinal fermentation were evaluated by VAS and H2-breath test, respectively.ResultsARR reduced plasma glucose response during the first two hours after the meal and the desire to eat, and increased breath hydrogen concentration at 4 h (p < 0.05 for all). Moreover, according to computational models, the ARR slightly reduced intestinal glucose absorption in the first hour after the meal and increased the overall postprandial insulin sensitivity.ConclusionsRusks made with amylose-rich flour could be useful for improving postprandial glucose metabolism and reduce the desire to eat, thus possibly contributing to the prevention and treatment of overweight/obesity, impaired glucose tolerance or diabetes.
Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects
Objective: To investigate the effects of cold storage and vinegar addition on glycaemic and insulinaemic responses to a potato meal in healthy subjects. Subjects and setting: A total of 13 healthy subjects volunteered for the study, and the tests were performed at Applied Nutrition and Food Chemistry, Lund University, Sweden. Experimental design and test meals: The study included four meals; freshly boiled potatoes, boiled and cold stored potatoes (8 degrees C, 24 h), boiled and cold stored potatoes (8 degrees C, 24 h) with addition of vinaigrette sauce (8 g olive oil and 28 g white vinegar (6% acetic acid)) and white wheat bread as reference. All meals contained 50 g available carbohydrates and were served as a breakfast in random order after an overnight fast. Capillary blood samples were collected at time intervals during 120 min for analysis of blood glucose and serum insulin. Glycaemic (GI) and insulinaemic indices (II) were calculated from the incremental areas using white bread as reference. Results: Cold storage of boiled potatoes increased resistant starch (RS) content significantly from 3.3 to 5.2% (starch basis). GI and II of cold potatoes added with vinegar (GI/II=96/128) were significantly reduced by 43 and 31%, respectively, compared with GI/II of freshly boiled potatoes (168/185). Furthermore, cold storage per se lowered II with 28% compared with the corresponding value for freshly boiled potatoes. Conclusion: Cold storage of boiled potatoes generated appreciable amounts of RS. Cold storage and addition of vinegar reduced acute glycaemia and insulinaemia in healthy subjects after a potato meal. The results show that the high glycaemic and insulinaemic features commonly associated with potato meals can be reduced by use of vinegar dressing and/or by serving cold potato products.
Review of the health benefits of peas (Pisum sativum L.)
Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.
Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication
Adzuki bean (Vigna angularis), an important legume crop, is grown in more than 30 countries of the world. The seed of adzuki bean, as an important source of starch, digestible protein, mineral elements, and vitamins, is widely used foods for at least a billion people. Here, we generated a high-quality draft genome sequence of adzuki bean by whole-genome shotgun sequencing. The assembled contig sequences reached to 450 Mb (83% of the genome) with an N50 of 38 kb, and the total scaffold sequences were 466.7Mb with an N50 of 1.29 Mb. Of them, 372.9 Mb of scaffold sequences were assigned to the 11 chromosomes of adzuki bean by using a single nucleotide polymorphism genetic map. A total of 34,183 protein-coding genes were predicted. Functional analysis revealed that significant differences in starch and fat content between adzuki bean and soybean were likely due to transcriptional abundance, rather than copy number variations, of the genes related to starch and oil synthesis. We detected strong selection signals in domestication by the population analysis of 50 accessions including 11 wild, 11 semiwild, 17 landraces, and 11 improved varieties. In addition, the semiwild accessions were illuminated to have a closer relationship to the cultigen accessions than the wild type, suggesting that the semiwild adzuki bean might be a preliminary landrace and play some roles in the adzuki bean domestication. The genome sequence of adzuki bean will facilitate the identification of agronomically important genes and accelerate the improvement of adzuki bean.