Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,247
result(s) for
"Starvation - genetics"
Sort by:
The long road to leptin
Leptin is an adipose tissue hormone that functions as an afferent signal in a negative feedback loop that maintains homeostatic control of adipose tissue mass. This endocrine system thus serves a critical evolutionary function by protecting individuals from the risks associated with being too thin (starvation) or too obese (predation and temperature dysregulation). Mutations in leptin or its receptor cause massive obesity in mice and humans, and leptin can effectively treat obesity in leptin-deficient patients. Leptin acts on neurons in the hypothalamus and elsewhere to elicit its effects, and mutations that affect the function of this neural circuit cause Mendelian forms of obesity. Leptin levels fall during starvation and elicit adaptive responses in many other physiologic systems, the net effect of which is to reduce energy expenditure. These effects include cessation of menstruation, insulin resistance, alterations of immune function, and neuroendocrine dysfunction, among others. Some or all of these effects are also seen in patients with constitutively low leptin levels, such as occur in lipodystrophy. Leptin is an approved treatment for generalized lipodystrophy, a condition associated with severe metabolic disease, and has also shown potential for the treatment of other types of diabetes. In addition, leptin restores reproductive capacity and increases bone mineral density in patients with hypothalamic amenorrhea, an infertility syndrome in females. Most obese patients have high endogenous levels of leptin, in some instances as a result of mutations in the neural circuit on which leptin acts, though in most cases, the pathogenesis of leptin resistance is not known. Obese patients with leptin resistance show a variable response to exogenous leptin but may respond to a combination of leptin plus amylin. Overall, the identification of leptin has provided a framework for studying the pathogenesis of obesity in the general population, clarified the nature of the biologic response to starvation, and helped to advance our understanding of the neural mechanisms that control feeding.
Journal Article
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
by
Visvikis, Orane
,
Carissimo, Annamaria
,
Di Bernardo, Diego
in
631/443/319/2723
,
631/80/86
,
Animals
2013
The lysosomal–autophagic pathway is activated by starvation and plays an important role in both cellular clearance and lipid catabolism. However, the transcriptional regulation of this pathway in response to metabolic cues is uncharacterized. Here we show that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is induced by starvation through an autoregulatory feedback loop and exerts a global transcriptional control on lipid catabolism via
Ppargc1α
and
Ppar1α
. Thus, during starvation a transcriptional mechanism links the autophagic pathway to cellular energy metabolism. The conservation of this mechanism in
Caenorhabditis elegans
suggests a fundamental role for TFEB in the evolution of the adaptive response to food deprivation. Viral delivery of TFEB to the liver prevented weight gain and metabolic syndrome in both diet-induced and genetic mouse models of obesity, suggesting a new therapeutic strategy for disorders of lipid metabolism.
Ballabio and colleagues report that the transcription factor TFEB, which has a known role in autophagy, is induced by starvation and promotes transcription of PGC1α and PPARα. Intriguingly, targeted expression of TFEB in the liver blocks the development of metabolic syndrome in mouse models of obesity.
Journal Article
The Drosophila melanogaster Genetic Reference Panel
by
Ràmia, Miquel
,
Casillas, Sònia
,
Carbone, Mary Anna
in
631/1647/334/1582/715
,
631/181/457/649
,
631/208/205/2138
2012
A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype–phenotype map were based on incomplete genotypic information. Here, we describe the
Drosophila melanogaster
Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the
X
chromosome, evidence for positive and negative selection, and rapid evolution of the
X
chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype–phenotype mapping using the power of
Drosophila
genetics.
A new resource for the analysis of population genomics and quantitative traits, the
Drosophila melanogaster
Genetic Reference Panel is presented.
Drosophila
gene variation resource
The
Drosophila melanogaster
Genetic Reference Panel (DGRP) is a community resource charting the molecular and phenotypic variation in 168 fully sequenced fruitfly strains derived from a single outbred natural population. The first set of analyses of DGRP data provides insights into the genomic landscape of genetic variation, positive and negative selection, and rapid evolution of the X chromosome. The results also reveal many low frequency variants in novel loci that are associated with quantitative traits, and explain a large fraction of the phenotypic variance.
Journal Article
Chronic social isolation signals starvation and reduces sleep in Drosophila
2021
Social isolation and loneliness have potent effects on public health
1
–
4
. Research in social psychology suggests that compromised sleep quality is a key factor that links persistent loneliness to adverse health conditions
5
,
6
. Although experimental manipulations have been widely applied to studying the control of sleep and wakefulness in animal models, how normal sleep is perturbed by social isolation is unknown. Here we report that chronic, but not acute, social isolation reduces sleep in
Drosophila
. We use quantitative behavioural analysis and transcriptome profiling to differentiate between brain states associated with acute and chronic social isolation. Although the flies had uninterrupted access to food, chronic social isolation altered the expression of metabolic genes and induced a brain state that signals starvation. Chronically isolated animals exhibit sleep loss accompanied by overconsumption of food, which resonates with anecdotal findings of loneliness-associated hyperphagia in humans. Chronic social isolation reduces sleep and promotes feeding through neural activities in the peptidergic fan-shaped body columnar neurons of the fly. Artificial activation of these neurons causes misperception of acute social isolation as chronic social isolation and thereby results in sleep loss and increased feeding. These results present a mechanistic link between chronic social isolation, metabolism, and sleep, addressing a long-standing call for animal models focused on loneliness
7
.
Behavioural and transcriptomic analyses show that chronic social isolation of
Drosophila
causes perturbed sleep and increased feeding, and induces a starvation-like brain state.
Journal Article
Starvation Responses Throughout the Caenorhabditis elegans Life Cycle
2020
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Journal Article
Formimidoyltransferase cyclodeaminase prevents the starvation-induced liver hepatomegaly and dysfunction through downregulating mTORC1
2021
The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh . Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh . Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction.
Journal Article
Early life starvation and Hedgehog-related signaling activate innate immunity downstream of daf-18/PTEN and lin-35/Rb causing developmental pathology in adult C. elegans
by
Chen, Jingxian
,
Chitrakar, Rojin
,
Falsztyn, Ivan B
in
Animals
,
Caenorhabditis elegans - genetics
,
Caenorhabditis elegans - growth & development
2025
Early life experiences such as malnutrition can affect development and adult disease risk, but the molecular basis of such protracted effects is poorly understood. In the nematode C. elegans, extended starvation during the first larval stage causes the development of germline tumors and other abnormalities in the adult gonad, limiting reproductive success. Insulin/IGF signaling (IIS) acts through WNT signaling and lipid metabolism to promote starvation-induced gonad abnormalities, but IIS-independent modifiers have not been identified. The tumor suppressor daf-18/PTEN inhibits IIS to suppress starvation-induced abnormalities, but we show that it also acts independently of IIS via lin-35/Rb, another tumor suppressor, to suppress such abnormalities. We found that lin-35/Rb and the rest of the DREAM complex repress transcription of the Hedgehog (Hh) signaling homologs ptr-23/PTCH-related, wrt-1/Hh-like, and wrt-10/Hh-like, which promote starvation-induced abnormalities. These Hh-related genes transcriptionally activate several genes associated with innate immunity in adults, which also promote starvation-induced gonad abnormalities. Surprisingly, we found that in addition to causing developmental abnormalities, early-life starvation induces an innate immune response later in life, leading to increased resistance to bacterial and intracellular pathogens. This work identifies a critical tumor-suppressor function of daf-18/PTEN independent of IIS, and it defines a regulatory network, including lin-35/Rb and DREAM, Hh-related signaling, and innate immunity pathways, that affects development of tumors and other developmental abnormalities resulting from early life starvation. By revealing that early-life starvation increases immunity later in life, this work suggests a fitness tradeoff between pathogen resistance and developmental robustness.
Journal Article
To Grow or Not to Grow: Nutritional Control of Development During Caenorhabditis elegans L1 Arrest
2013
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. “L1 arrest” (also known as “L1 diapause”) occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.
Journal Article
Persistent epigenetic differences associated with prenatal exposure to famine in humans
2008
Extensive epidemiologic studies have suggested that adult disease risk is associated with adverse environmental conditions early in development. Although the mechanisms behind these relationships are unclear, an involvement of epigenetic dysregulation has been hypothesized. Here we show that individuals who were prenatally exposed to famine during the Dutch Hunger Winter in 1944-45 had, 6 decades later, less DNA methylation of the imprinted IGF2 gene compared with their unexposed, same-sex siblings. The association was specific for periconceptional exposure, reinforcing that very early mammalian development is a crucial period for establishing and maintaining epigenetic marks. These data are the first to contribute empirical support for the hypothesis that early-life environmental conditions can cause epigenetic changes in humans that persist throughout life.
Journal Article
Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae)
by
Farahani, Saeed
,
Whyard, Steven
,
Goldansaz, Seyed Hossein
in
Adaptation, Physiological - genetics
,
Animals
,
Antioxidants
2020
Insects face diverse biotic and abiotic stresses that can affect their survival. Many of these stressors impact cellular metabolism, often resulting in increased accumulation of reactive oxygen species (ROS). Consequently, insects will respond to these stressors by increasing antioxidant activity and increased production of heat shock proteins (HSPs). In this study, the effect of heat, cold, starvation, and parasitism by Habroacon hebetor wasps was examined in the carob moth, Ectomyelois ceratoniae, to determine which responses were common to different stresses. For all stressors, malondialdehyde levels increased, indicative of oxidative stress in the insects. The activity of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), increased with each stress, suggesting that these enzymes were serving a protective role for the insects. Heat (46°C for 100 min) and cold (-15°C for 30 min) treatments caused significant mortalities to all developmental stages, but pretreatments of moderate heat (37°C for 10 min) or cold (10°C for 10 min) induced thermotolerance and reduced the mortality rates when insects were subsequently exposed to lethal temperatures. Quantitative RT-PCR confirmed that heat and cold tolerance were associated with up-regulation of two HSPs, HSP70 and HSP90. Interestingly, HSP70 transcripts increased to a greater extent with cold treatment, while HSP90 transcripts increased more in response to high temperatures. RNA interference (RNAi)-mediated knockdown of either HSP70 or HSP90 transcripts was achieved by injecting larvae with dsRNA targeting each gene's transcripts, and resulted in a loss of acquired thermotolerance in insects subjected to the heat or cold pretreatments. These observations provide convincing evidence that both HSP70 and HSP90 are important mediators of the acquired thermotolerance. Starvation and parasitism by wasps caused differential expression of the HSP genes. In response to starvation, HSP90 transcripts increased to a greater extent than HSP70, while in contrast, HSP70 transcripts increased to a greater extent than those of HSP90 during the first 48 h of wasp parasitism. These results showed the differential induction of the two HSPs' transcripts with variable stresses. As well as, heat, cold, starvation, and parasitism induce oxidative stress, and antioxidant enzymes likely play an important role in reducing oxidative damage in E. ceratoniae.
Journal Article