Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,684
result(s) for
"Stat5 protein"
Sort by:
Fatty acid transport protein 2 reprograms neutrophils in cancer
2019
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells. Here we report that mouse and human PMN-MDSCs exclusively upregulate fatty acid transport protein 2 (FATP2). Overexpression of FATP2 in PMN-MDSCs was controlled by granulocyte–macrophage colony-stimulating factor, through the activation of the STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSCs. The main mechanism of FATP2-mediated suppressive activity involved the uptake of arachidonic acid and the synthesis of prostaglandin E
2
. The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSCs and substantially delayed tumour progression. In combination with checkpoint inhibitors, FATP2 inhibition blocked tumour progression in mice. Thus, FATP2 mediates the acquisition of immunosuppressive activity by PMN-MDSCs and represents a target to inhibit the functions of PMN-MDSCs selectively and to improve the efficiency of cancer therapy.
The lipid transporter FATP2 reprograms neutrophils to polymorphonuclear myeloid-derived suppressor cells by mediating the uptake of arachidonic acid and promoting the synthesis of prostaglandin E
2
.
Journal Article
ECM1 is an essential factor for the determination of M1 macrophage polarization in IBD in response to LPS stimulation
2020
Inflammatory bowel disease (IBD) comprises chronic relapsing disorders of the gastrointestinal tract characterized pathologically by intestinal inflammation and epithelial injury. Here, we uncover a function of extracellular matrix protein 1 (ECM1) in promoting the pathogenesis of human and mouse IBD. ECM1 was highly expressed in macrophages, particularly tissue-infiltrated macrophages under inflammatory conditions, and ECM1 expression was significantly induced during IBD progression. The macrophagespecific knockout of ECM1 resulted in increased arginase 1 (ARG1) expression and impaired polarization into the M1 macrophage phenotype after lipopolysaccharide (LPS) treatment. A mechanistic study showed that ECM1 can regulate M1 macrophage polarization through the granulocyte-macrophage colony-stimulating factor/ STAT5 signaling pathway. Pathological changes in mice with dextran sodium sulfate-induced IBD were alleviated by the specific knockout of the ECM1 gene in macrophages. Taken together, our findings show that ECM1 has an important function in promoting M1 macrophage polarization, which is critical for controlling inflammation and tissue repair in the intestine.
Journal Article
The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity
2021
Targeting the p53–MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8
+
T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8
+
T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8
+
T cells. Targeting the p53–MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53–MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.
The E3 ubiquitin ligase MDM2 inhibits the tumor suppressor p53 and is an important therapeutic target. Zou and colleagues demonstrate that MDM2 also has a T cell-intrinsic role that supports antitumor responses.
Journal Article
Cancer SLC43A2 alters T cell methionine metabolism and histone methylation
2020
Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours
1
–
4
, but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8
+
T cells, thereby lowering intracellular levels of methionine and the methyl donor
S
-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach.
Expression of the transporter SLC43A2 by tumour cells allows them to outcompete T cells for methionine and thereby disrupt the survival and function of tumour-infiltrating T cells.
Journal Article
STAT proteins in cancer: orchestration of metabolism
2023
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.Reprogrammed metabolism is a hallmark of cancer. Here, Li, Zhang and colleagues describe how signal transducer and activator of transcription (STAT) proteins alter cancer cell metabolism by sensing and transducing signals from the tumour environment and modulating signalling pathways, transcription factors, mitochondrial proteins and enzymes.
Journal Article
Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation
2018
The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90–120 nm; small exosome vesicles, Exo-S, 60–80 nm) and discovered an abundant population of non-membranous nanoparticles termed ‘exomeres’ (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique
N
-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.
Lyden and colleagues use asymmetric flow field-flow fractionation to classify nanoparticles derived from cell lines and human samples, including previously uncharacterized large, Exo-L and small, Exo-S, exosome subsets.
Journal Article
An engineered IL-2 partial agonist promotes CD8+ T cell stemness
2021
Adoptive transfer of antigen-specific T cells represents a major advance in cancer immunotherapy, with robust clinical outcomes in some patients
1
. Both the number of transferred T cells and their differentiation state are critical determinants of effective responses
2
,
3
. T cells can be expanded with T cell receptor (TCR)-mediated stimulation and interleukin-2, but this can lead to differentiation into effector T cells
4
,
5
and lower therapeutic efficacy
6
, whereas maintenance of a more stem-cell-like state before adoptive transfer is beneficial
7
. Here we show that H9T, an engineered interleukin-2 partial agonist, promotes the expansion of CD8
+
T cells without driving terminal differentiation. H9T led to altered STAT5 signalling and mediated distinctive downstream transcriptional, epigenetic and metabolic programs. In addition, H9T treatment sustained the expression of T cell transcription factor 1 (TCF-1) and promoted mitochondrial fitness, thereby facilitating the maintenance of a stem-cell-like state. Moreover, TCR-transgenic and chimeric antigen receptor-modified CD8
+
T cells that were expanded with H9T showed robust anti-tumour activity in vivo in mouse models of melanoma and acute lymphoblastic leukaemia. Thus, engineering cytokine variants with distinctive properties is a promising strategy for creating new molecules with translational potential.
H9T, an engineered IL-2 partial agonist, promotes the expansion of T cells while maintaining a stem-cell-like state, leading to improved efficacy of adoptive cell therapy in mouse models of melanoma and acute lymphoblastic leukaemia.
Journal Article
An essential role for the IL-2 receptor in Treg cell function
2016
The cytokine receptor IL-2R is essential for the development of T
reg
cells; therefore, it has been difficult to separate this from its role in the suppressive function of T
reg
cells. Rudensky and colleagues use various genetic systems to show that capture of IL-2 by IL-2R is important for suppression of CD8
+
T cells but not that of CD4
+
T cells.
Regulatory T cells (T
reg
cells), which have abundant expression of the interleukin 2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature indicates a key role for a simple network based on the consumption of IL-2 by T
reg
cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the T
reg
cell lineage–specification factor Foxp3, which has confounded experimental efforts to understand the role of IL-2R expression and signaling in the suppressor function of T
reg
cells. Using genetic gain- and loss-of-function approaches, we found that capture of IL-2 was dispensable for the control of CD4
+
T cells but was important for limiting the activation of CD8
+
T cells, and that IL-2R-dependent activation of the transcription factor STAT5 had an essential role in the suppressor function of T
reg
cells separable from signaling via the T cell antigen receptor.
Journal Article
Suppressing STAT5 signaling affects osteosarcoma growth and stemness
2020
Osteosarcoma (OS) is the most common primary bone tumor that primarily affects children and adolescents. Studies suggested that dysregulation JAK/STAT signaling promotes the development of OS. Cells treated with pimozide, a STAT5 inhibitor suppressed proliferation and colony formation and induced sub G0/G1 cell cycle arrest and apoptosis. There was a reduction in cyclin D1 and CDK2 expression and Rb phosphorylation, and activation of Caspase-3 and PARP cleavage. In addition, pimozide suppressed the formation of 3-dimensional osteospheres and growth of the cells in the Tumor in a Dish lung organoid system. Furthermore, there was a reduction in expression of cancer stem cell marker proteins DCLK1, CD44, CD133, Oct-4, and ABCG2. More importantly, it was the short form of DCLK1 that was upregulated in osteospheres, which was suppressed in response to pimozide. We further confirmed by flow cytometry a reduction in DCLK1+ cells. Moreover, pimozide inhibits the phosphorylation of STAT5, STAT3, and ERK in OS cells. Molecular docking studies suggest that pimozide interacts with STAT5A and STAT5B with binding energies of −8.4 and −6.4 Kcal/mol, respectively. Binding was confirmed by cellular thermal shift assay. To further understand the role of STAT5, we knocked down the two isoforms using specific siRNAs. While knockdown of the proteins did not affect the cells, knockdown of STAT5B reduced pimozide-induced necrosis and further enhanced late apoptosis. To determine the effect of pimozide on tumor growth in vivo, we administered pimozide intraperitoneally at a dose of 10 mg/kg BW every day for 21 days in mice carrying KHOS/NP tumor xenografts. Pimozide treatment significantly suppressed xenograft growth. Western blot and immunohistochemistry analyses also demonstrated significant inhibition of stem cell marker proteins. Together, these data suggest that pimozide treatment suppresses OS growth by targeting both proliferating cells and stem cells at least in part by inhibiting the STAT5 signaling pathway.
Journal Article
The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation
2019
Regulatory T (Treg) cells control self-tolerance, inflammatory responses and tissue homeostasis. In mature Treg cells, continued expression of FOXP3 maintains lineage identity, while T cell receptor (TCR) signaling and interleukin-2 (IL-2)/STAT5 activation support the suppressive effector function of Treg cells, but how these regulators synergize to control Treg cell homeostasis and function remains unclear. Here we show that TCR-activated posttranslational modification by O-linked N-Acetylglucosamine (O-GlcNAc) stabilizes FOXP3 and activates STAT5, thus integrating these critical signaling pathways. O-GlcNAc-deficient Treg cells develop normally but display modestly reduced FOXP3 expression, strongly impaired lineage stability and effector function, and ultimately fatal autoimmunity in mice. Moreover, deficiency in protein O-GlcNAcylation attenuates IL-2/STAT5 signaling, while overexpression of a constitutively active form of STAT5 partially ameliorates Treg cell dysfunction and systemic inflammation in O-GlcNAc deficient mice. Collectively, our data demonstrate that protein O-GlcNAcylation is essential for lineage stability and effector function in Treg cells.
The transcription factor Foxp3 and Stat5 modulate lineage stability and function of regulatory T (Treg) cells to promote immune homeostasis. Here the authors show that O-GlcNAcylation of Foxp3 and Stat5, mediated by O-GlcNAc transferase (OGT), is essential for Treg-mediate immune balance, with Treg-specific deficiency of OGT leading to severe autoimmunity.
Journal Article