Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,266
result(s) for
"Statistical graphs"
Sort by:
ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM GRAPH MODELS
2013
We introduce a method for the theoretical analysis of exponential random graph models. The method is based on a large-deviations approximation to the normalizing constant shown to be consistent using theory developed by Chatterjee and Varadhan [European J. Combin. 32 (2011) 1000—1017]. The theory explains a host of difficulties encountered by applied workers: many distinct models have essentially the same MLE, rendering the problems \"practically\" ill-posed. We give the first rigorous proofs of \"degeneracy\" observed in these models. Here, almost all graphs have essentially no edges or are essentially complete. We supplement recent work of Bhamidi, Bresler and Sly [2008 IEEE 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (2008) 803—812 IEEE] showing that for many models, the extra sufficient statistics are useless: most realizations look like the results of a simple Erdős—Rényi model. We also find classes of models where the limiting graphs differ from Erdős—Rényi graphs. A limitation of our approach, inherited from the limitation of graph limit theory, is that it works only for dense graphs.
Journal Article
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS
2013
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of net-work structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.
Journal Article
Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs
by
Sussman, Daniel L.
,
Priebe, Carey E.
,
Tang, Minh
in
Adjacency matrix
,
Cluster analysis
,
Clustering
2012
We present a method to estimate block membership of nodes in a random graph generated by a stochastic blockmodel. We use an embedding procedure motivated by the random dot product graph model, a particular example of the latent position model. The embedding associates each node with a vector; these vectors are clustered via minimization of a square error criterion. We prove that this method is consistent for assigning nodes to blocks, as only a negligible number of nodes will be misassigned. We prove consistency of the method for directed and undirected graphs. The consistent block assignment makes possible consistent parameter estimation for a stochastic blockmodel. We extend the result in the setting where the number of blocks grows slowly with the number of nodes. Our method is also computationally feasible even for very large graphs. We compare our method with Laplacian spectral clustering through analysis of simulated data and a graph derived from Wikipedia documents.
Journal Article
INFERENCE USING NOISY DEGREES: DIFFERENTIALLY PRIVATE β-MODEL AND SYNTHETIC GRAPHS
2016
The β-model of random graphs is an exponential family model with the degree sequence as a sufficient statistic. In this paper, we contribute three key results. First, we characterize conditions that lead to a quadratic time algorithm to check for the existence of MLE of the β-model, and show that the MLE never exists for the degree partition β-model. Second, motivated by privacy problems with network data, we derive a differentially private estimator of the parameters of β-model, and show it is consistent and asymptotically normally distributed—it achieves the same rate of convergence as the nonprivate estimator. We present an efficient algorithm for the private estimator that can be used to release synthetic graphs. Our techniques can also be used to release degree distributions and degree partitions accurately and privately, and to perform inference from noisy degrees arising from contexts other than privacy. We evaluate the proposed estimator on real graphs and compare it with a current algorithm for releasing degree distributions and find that it does significantly better. Finally, our paper addresses shortcomings of current approaches to a fundamental problem of how to perform valid statistical inference from data released by privacy mechanisms, and lays a foundational groundwork on how to achieve optimal and private statistical inference in a principled manner by modeling the privacy mechanism; these principles should be applicable to a class of models beyond the β-model.
Journal Article
Extremal Regular Graphs: Independent Sets and Graph Homomorphisms
2017
This survey concerns regular graphs that are extremal with respect to the number of independent sets and, more generally, graph homomorphisms. More precisely, in the family of of d-regular graphs, which graph G maximizes/minimizes the quantity i(G)
1/v(G)
, the number of independent sets in G normalized exponentially by the size of G? What if i(G) is replaced by some other graph parameter? We review existing techniques, highlight some exciting recent developments, and discuss open problems and conjectures for future research.
Journal Article
Local dependence in random graph models: characterization, properties and statistical inference
by
Schweinberger, Michael
,
Handcock, Mark S.
in
Bayesian analysis
,
Bayesian method
,
Economic analysis
2015
Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well‐defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M‐dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’.
Journal Article
CONNECTIVITY OF SOFT RANDOM GEOMETRIC GRAPHS
2016
Consider a graph on n uniform random points in the unit square, each pair being connected by an edge with probability p if the inter-point distance is at most r. We show that as n → ∞ the probability of full connectivity is governed by that of having no isolated vertices, itself governed by a Poisson approximation for the number of isolated vertices, uniformly over all choices of p, r. We determine the asymptotic probability of connectivity for all (pn, rn) subject to rn = O(n-ε), some ε > 0. We generalize the first result to higher dimensions and to a larger class of connection probability functions.
Journal Article
ASYMPTOTICS IN DIRECTED EXPONENTIAL RANDOM GRAPH MODELS WITH AN INCREASING BI-DEGREE SEQUENCE
Although asymptotic analyses of undirected network models based on degree sequences have started to appear in recent literature, it remains an open problem to study statistical properties of directed network models. In this paper, we provide for the first time a rigorous analysis of directed exponential random graph models using the in-degrees and out-degrees as sufficient statistics with binary as well as continuous weighted edges. We establish the uniform consistency and the asymptotic normality for the maximum likelihood estimate, when the number of parameters grows and only one realized observation of the graph is available. One key technique in the proofs is to approximate the inverse of the Fisher information matrix using a simple matrix with high accuracy. Numerical studies confirm our theoretical findings.
Journal Article
RANDOM GRAPHS WITH A GIVEN DEGREE SEQUENCE
2011
Large graphs are sometimes studied through their degree sequences (power law or regular graphs). We study graphs that are uniformly chosen with a given degree sequence. Under mild conditions, it is shown that sequences of such graphs have graph limits in the sense of Lovász and Szegedy with identifiable limits. This allows simple determination of other features such as the number of triangles. The argument proceeds by studying a natural exponential model having the degree sequence as a sufficient statistic. The maximum likelihood estimate (MLE) of the parameters is shown to be unique and consistent with high probability. Thus n parameters can be consistently estimated based on a sample of size one. A fast, provably convergent, algorithm for the MLE is derived. These ingredients combine to prove the graph limit theorem. Along the way, a continuous version of the Erdős—Gallai characterization of degree sequences is derived.
Journal Article
MAXIMUM LILKELIHOOD ESTIMATION IN THE β-MODEL
by
Fienberg, Stephen E.
,
Petrović, Sonja
,
Rinaldo, Alessandro
in
62F99
,
beta-model
,
Maximum likelihood estimation
2013
We study maximum likelihood estimation for the statistical model for undirected random graphs, known as the β-model, in which the degree sequences are minimal sufficient statistics. We derive necessary and sufficient conditions, based on the polytope of degree sequences, for the existence of the maximum likelihood estimator (MLE) of the model parameters. We characterize in a combinatorial fashion sample points leading to a nonexistent MLE, and nonestimability of the probability parameters under a nonexistent MLE. We formulate conditions that guarantee that the MLE exists with probability tending to one as the number of nodes increases.
Journal Article