Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
49,323
result(s) for
"Stem Cells - cytology"
Sort by:
Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential
by
Watanabe, Akira
,
Takahashi, Kazutoshi
,
Ohnuki, Mari
in
Biological Sciences
,
Biotechnologie
,
Biotechnology
2014
Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s—the long-terminal repeats of HERV type-H (HERV-H)—to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H–driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.
Journal Article
Whole-organism clone tracing using single-cell sequencing
2018
A single-cell sequencing method is developed that uses transcriptomics and CRISPR–Cas9 technology to investigate clonal relationships in cells present in different zebrafish tissues.
Tracing single cells from embryo to adult
Determining the adult fate of progenitor cells present during embryonic development is a challenging task because it requires simultaneous knowledge about the lineage and identity of the cells at a single-cell level. Alexander van Oudenaarden and colleagues have developed a new method to tackle this challenge. ScarTrace relies on single-cell transcriptome sequencing and barcodes ('scars') introduced by CRISPR–Cas9 in individual progenitor cells. The authors use ScarTrace to investigate lineage relationships in cells present in different zebrafish tissues. In the future, such a method could make it possible to match all embryonic cell types to all adult cell types, and to reconstruct how the body emerges from a single cell.
Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development
1
,
2
, monitoring the heritable expression of genetically encoded fluorescent proteins
3
and, more recently, using next-generation sequencing technologies that exploit somatic mutations
4
, microsatellite instability
5
, transposon tagging
6
, viral barcoding
7
, CRISPR–Cas9 genome editing
8
,
9
,
10
,
11
,
12
,
13
and Cre–
loxP
recombination
14
. Single-cell transcriptomics
15
provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.
Journal Article
Embryonic stem cell potency fluctuates with endogenous retrovirus activity
by
Macfarlan, Todd S.
,
Singer, Oded
,
Pfaff, Samuel L.
in
631/136/2444
,
631/136/532/2117
,
631/208/200
2012
Embryonic stem (ES) cells are derived from blastocyst-stage embryos and are thought to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we identify a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that expresses high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the inner cell mass pluripotency proteins Oct4 (also known as Pou5f1), Sox2 and Nanog, and have acquired the ability to contribute to both embryonic and extraembryonic tissues. We show that nearly all ES cells cycle in and out of this privileged state, which is partially controlled by histone-modifying enzymes. Transcriptome sequencing and bioinformatic analyses showed that many 2C transcripts are initiated from long terminal repeats derived from endogenous retroviruses, suggesting this foreign sequence has helped to drive cell-fate regulation in placental mammals.
A rare cell subpopulation within mouse embryonic stem cell cultures is identified that exhibits properties of two-cell (2C) embryos; the interconversion of ES cells to 2C cells correlates with endogenous retroviral activity.
Retrovirus-primed stem cells
Mouse embryos progressively lose totipotency — the ability to develop into all embryonic and extraembryonic cell types, and to develop as a live animal — after the two-cell embryo stage. Embryonic stem (ES) cells, derived from the inner cell mass of the later blastocyst stage, are thought to be unable to contribute to extraembryonic tissue. Now, Samuel Pfaff and colleagues report a rare population in cultured ES cells that expresses transcripts previously found only in two-cell embryos and that has the potential to develop into extraembryonic tissue. Almost all ES cells transiently enter this privileged two-cell-like state, regulated in part by histone-modification enzymes. Interestingly, many of the two-cell-like-embryo transcripts are initiated by endogenous retrovirus-like elements, suggesting that placental mammals have hijacked foreign sequences for cell-fate regulation.
Journal Article
From haematopoietic stem cells to complex differentiation landscapes
2018
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Journal Article
Human pluripotent stem cell-derived neural constructs for predicting neural toxicity
by
Hou, Zhonggang
,
Thomson, James A.
,
Engstrom, Collin J.
in
Artificial intelligence
,
Bioassays
,
Bioinformatics
2015
Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.
Journal Article
The cell cycle in stem cell proliferation, pluripotency and differentiation
by
Sicinski, Piotr
,
Kolodziejczyk, Aleksandra
,
Michowski, Wojciech
in
631/136/1660/1986
,
631/45/612/1223
,
631/532
2019
Cyclins, cyclin-dependent kinases and other components of the core cell cycle machinery drive cell division. Growing evidence indicates that this machinery operates in a distinct fashion in some mammalian stem cell types, such as pluripotent embryonic stem cells. In this Review, we discuss our current knowledge of how cell cycle proteins mechanistically link cell proliferation, pluripotency and cell fate specification. We focus on embryonic stem cells, induced pluripotent stem cells and embryonic neural stem/progenitor cells.
In this Review, the authors discuss how cell cycle proteins mechanistically link cell proliferation, pluripotency and cell fate specification.
Journal Article
Evaluating totipotency using criteria of increasing stringency
2021
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.Posfai, Schell, Janiszewski et al. assess candidate totipotent stem cells with in vitro and in vivo assays of increasing stringency to evaluate their developmental potential and lineage contributions.
Journal Article