Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,733 result(s) for "Steroids - chemistry"
Sort by:
Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment
Calcidiol, the major circulating metabolite of vitamin D, supports induction of pleiotropic antimicrobial responses in vitro. Vitamin D supplementation elevates circulating calcidiol concentrations, and thus has a potential role in the prevention and treatment of infection. The immunomodulatory effects of administering vitamin D to humans with an infectious disease have not previously been reported. To characterize these effects, we conducted a detailed longitudinal study of circulating and antigen-stimulated immune responses in ninety-five patients receiving antimicrobial therapy for pulmonary tuberculosis who were randomized to receive adjunctive high-dose vitamin D or placebo in a clinical trial, and who fulfilled criteria for per-protocol analysis. Vitamin D supplementation accelerated sputum smear conversion and enhanced treatment-induced resolution of lymphopaenia, monocytosis, hypercytokinaemia, and hyperchemokinaemia. Administration of vitamin D also suppressed antigen-stimulated proinflammatory cytokine responses, but attenuated the suppressive effect of antimicrobial therapy on antigenstimulated secretion of IL-4, CC chemokine ligand 5, and IFN-α. We demonstrate a previously unappreciated role for vitamin D supplementation in accelerating resolution of inflammatory responses during tuberculosis treatment. Our findings suggest a potential role for adjunctive vitamin D supplementation in the treatment of pulmonary infections to accelerate resolution of inflammatory responses associated with increased risk of mortality.
A photochemical dehydrogenative strategy for aniline synthesis
Chemical reactions that reliably join two molecular fragments together (cross-couplings) are essential to the discovery and manufacture of pharmaceuticals and agrochemicals 1 , 2 . The introduction of amines onto functionalized aromatics at specific and pre-determined positions ( ortho versus meta versus para ) is currently achievable only in transition-metal-catalysed processes and requires halogen- or boron-containing substrates 3 – 6 . The introduction of these groups around the aromatic unit is dictated by the intrinsic reactivity profile of the method (electrophilic halogenation or C–H borylation) so selective targeting of all positions is often not possible. Here we report a non-canonical cross-coupling approach for the construction of anilines, exploiting saturated cyclohexanones as aryl electrophile surrogates. Condensation between amines and carbonyls, a process that frequently occurs in nature and is often used by (bio-)organic chemists 7 , enables a predetermined and site-selective carbon–nitrogen (C–N) bond formation, while a photoredox- and cobalt-based catalytic system progressively desaturates the cyclohexene ring en route to the aniline. Given that functionalized cyclohexanones are readily accessible with complete regiocontrol using the well established carbonyl reactivity, this approach bypasses some of the frequent selectivity issues of aromatic chemistry. We demonstrate the utility of this C–N coupling protocol by preparing commercial medicines and by the late-stage amination–aromatization of natural products, steroids and terpene feedstocks. A dual cobalt and photocatalysis system provides a way to assemble anilines from cyclohexanones and amines by progressively dehydrating the intermediate imine.
Detection and analysis of 17 steroid hormones by ultra-high-performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-MS) in different sex and maturity stages of Antarctic krill (Euphausia superba Dana)
A sensitive and accurate method for determination of 17 endogenous and exogenous steroid hormones in Antarctic krill was developed. The method utilized UHPLC-MS in electrospray ionization mode (ESI). Samples were prepared by alkaline hydrolysis; sequential vortex extraction with ethyl acetate, methanol and acetonitrile; followed by a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) clean-up method. The system suitability tests including theoretical plate number, resolution, repeatability, tailing factor proved the system's resolution and reproducibility that can meet the requirements of sample analysis. The developed method resulted in satisfactory recoveries that varied from 75.4%-110.6% and relative standard deviations (RSDs) that ranged from 3.1%-10.5%. The ranges of the limits of detection (LODs) and the limits of quantitation (LOQs) were 2-30 ng kg-1 and 10-100 ng kg-1, respectively. 14 hormones including cortisone, aldosterone, testosterone propionate, estriol, megestrol acetate, cortisone acetate, dexamethasone, testosterone, hydroxyprogesterone, nandrolone, prednisolone, cortisol, progesterone and estradiol were found in Antarctic krill. Other 3 hormones (Diethylstilbestrol, norethisterone and androsterone) were not detected. The levels of exogenous steroid hormones were much greater than those of endogenous steroid hormones, and the levels of exogenous glucocorticoids were much greater than those of exogenous sex hormones. The changes of hormones in different sex and maturity stages were also explored. Endogenous hormones might regulate the reproductive and development of Antarctic krill. The detected exogenous hormones suggests the potential for hormonal contamination in Antarctic waters that can affect organisms even affect human beings by food chain.
Steroid dimers
Steroid dimers are an important group of compounds produced by various marine organisms, and also synthesized in the laboratories. This group of compounds possesses various pharmacological and biological properties, and can also be used to create€ & ldquo;molecular umbrellas & rdquo; for drug delivery. Steroid Dimers: Chemistry and Applications in Drug Design and Delivery provides an up-to-date overview on the chemistry and applications of steroid dimers of natural and synthetic origins. The book includes easy-to-follow synthetic protocols for various classes of important dimeric steroids
Pyrazoline Hybrids as Promising Anticancer Agents: An Up-to-Date Overview
Pyrazolines are five-membered heterocycles possessing two adjacent nitrogens. They have attracted significant attention from organic and medicinal chemists due to their potent biological activities and the numerous possibilities for structural diversification. In the last decade, they have been intensively studied as targets for potential anticancer therapeutics, producing a steady yearly rise in the number of published research articles. Many pyrazoline derivatives have shown remarkable cytotoxic activities in the form of heterocyclic or non-heterocyclic based hybrids, such as with coumarins, triazoles, and steroids. The enormous amount of related literature in the last 5 years prompted us to collect all these published data from screening against cancer cell lines, or protein targets like EGFR and structure activity relationship studies. Therefore, in the present review, a comprehensive account of the compounds containing the pyrazoline nucleus will be provided. The chemical groups and the structural modifications responsible for the activity will be highlighted. Moreover, emphasis will be given on recent examples from the literature and on the work of research groups that have played a key role in the development of this field.
Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia
Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-( p -nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis. Synthetic anion transporters that replace the activity of defective anion channels have been proposed as treatments for cystic fibrosis; however, it remains uncertain whether such molecules are fundamentally toxic. A series of bis- and tris-(thio)ureas capable of transporting anions have now been tested in cells expressing halide-sensitive yellow fluorescent protein. One bis-urea compound proved especially effective while showing almost no toxicity.
Recent Advances in Steroid Discovery: Structural Diversity and Bioactivity of Marine and Terrestrial Steroids
Steroids have been pivotal in medicine and biology, with research into their therapeutic potential accelerating over the past few decades. This review examines recent steroid discoveries from marine and terrestrial sources, highlighting both novel compounds and those with newly identified biological activities. The structural diversity of these steroids contributes to their wide range of biological activity, including anticancer, antimicrobial, antidiabetic, anti-inflammatory, and immunomodulatory properties. Particular emphasis is placed on steroids derived from marine invertebrates, fungi, and medicinal plants, which have shown promising therapeutic potential. Advances in analytical techniques such as NMR spectroscopy and mass spectrometry have facilitated the identification of these compounds. These findings emphasize the growing importance of steroids in addressing pressing global health issues, particularly antibiotic resistance and cancer, where new therapeutic strategies are urgently needed. Although many newly identified steroids exhibit potent bioactivity, challenges remain in translating these findings into clinical therapies. Ongoing exploration of natural sources, along with the application of modern synthetic and computational methods, will be crucial in unlocking the full therapeutic potential of steroid-based compounds.
Steroid Biomarkers Revisited – Improved Source Identification of Faecal Remains in Archaeological Soil Material
Steroids are used as faecal markers in environmental and in archaeological studies, because they provide insights into ancient agricultural practices and the former presence of animals. Up to now, steroid analyses could only identify and distinguish between herbivore, pig, and human faecal matter and their residues in soils and sediments. We hypothesized that a finer differentiation between faeces of different livestock animals could be achieved when the analyses of several steroids is combined (Δ5-sterols, 5α-stanols, 5β-stanols, epi-5β-stanols, stanones, and bile acids). We therefore reviewed the existing literature on various faecal steroids from livestock and humans and analysed faeces from old livestock breed (cattle, horse, donkey, sheep, goat, goose, and pig) and humans. Additionally, we performed steroid analyses on soil material of four different archaeological periods (sites located in the Lower Rhine Basin, Western Germany, dating to the Linearbandkeramik, Urnfield Period / Bronze Age, Iron Age, Roman Age) with known or supposed faecal inputs. By means of already established and newly applied steroid ratios of the analysed faeces together with results from the literature, all considered livestock faeces, except sheep and cattle, could be distinguished on the basis of their steroid signatures. Most remarkably was the identification of horse faeces (via the ratio: epi-5β-stigmastanol: 5β-stigmastanol + epicoprostanol: coprostanol; together with the presence of chenodeoxycholic acid) and a successful differentiation between goat (with chenodeoxycholic acid) and sheep/cattle faeces (without chenodeoxycholic acid). The steroid analysis of archaeological soil material confirmed the supposed faecal inputs, even if these inputs had occurred several thousand years ago.
A biocatalytic hydroxylation-enabled unified approach to C19-hydroxylated steroids
Steroidal C19-hydroxylation is pivotal to the synthesis of naturally occurring bioactive C19-OH steroids and 19-norsteroidal pharmaceuticals. However, realizing this transformation is proved to be challenging through either chemical or biological synthesis. Herein, we report a highly efficient method to synthesize 19-OH-cortexolone in 80% efficiency at the multi-gram scale. The obtained C 19 -OH-cortexolone can be readily transformed to various synthetically useful intermediates including the industrially valuable 19-OH-androstenedione, which can serve as a basis for synthesis of C19-functionalized steroids as well as 19-nor steroidal drugs. Using this biocatalytic C19-hydroxylation method, the unified synthesis of six C19-hydroxylated pregnanes is achieved in just 4 to 9 steps. In addition, the structure of sclerosteroid B is revised on the basis of our synthesis. C19 hydroxylation is a unique feature of some bioactive steroids. Here, the authors developed a direct C19 hydroxylation approach to scalably access 19-OH-cortexolone in the host T. cucumeris and then converted the product into various pharmaceutically useful products via chemical synthesis.
From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.