Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,249 result(s) for "Stiffening"
Sort by:
A non-invasive multimodal approach to understand plastic degradation in design objects
This study explores the early detection of degradation in plastic-based cultural heritage objects using non-invasive spectroscopic techniques. The results on artificially aged ABS specimens revealed degradation markers at low exposure levels. Changes in polymer composition were then correlated with mechanical stiffening and increased friction. The approach offers valuable tools for in situ monitoring and preventive conservation of modern art and design objects.
Compression stiffening of fibrous networks with stiff inclusions
Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.
Nonlinear elasticity of biological basement membrane revealed by rapid inflation and deflation
Basement membrane (BM) is a thin layer of extracellular matrix that surrounds most animal tissues, serving as a physical barrier while allowing nutrient exchange. Although they have important roles in tissue structural integrity, physical properties of BMs remain largely uncharacterized, which limits our understanding of their mechanical functions. Here, we perform pressure-controlled inflation and deflation to directly measure the nonlinear mechanics of BMs in situ. We show that the BMs behave as a permeable, hyperelastic material whose mechanical properties and permeability can be measured in a model-independent manner. Furthermore, we find that BMs exhibit a remarkable nonlinear stiffening behavior, in contrast to the reconstituted Matrigel. This nonlinear stiffening behavior helps the BMs to avoid the snap-through instability (or structural softening) widely observed during the inflation of most elastomeric balloons and thus maintain sufficient confining stress to the enclosed tissues during their growth.
Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network
Stretchable ionic skins are intriguing in mimicking the versatile sensations of natural skins. However, for their applications in advanced electronics, good elastic recovery, self-healing, and more importantly, skin-like nonlinear mechanoresponse (strain-stiffening) are essential but can be rarely met in one material. Here we demonstrate a robust proton-conductive ionic skin design via introducing an entropy-driven supramolecular zwitterionic reorganizable network to the hydrogen-bonded polycarboxylic acid network. The design allows two dynamic networks with distinct interacting strength to sequentially debond with stretch, and the conflict among elasticity, self-healing, and strain-stiffening can be thus defeated. The representative polyacrylic acid/betaine elastomer exhibits high stretchability (1600% elongation), immense strain-stiffening (24-fold modulus enhancement), ~100% self-healing, excellent elasticity (97.9 ± 1.1% recovery ratio, <14% hysteresis), high transparency (99.7 ± 0.1%), moisture-preserving, anti-freezing (elastic at −40 °C), water reprocessibility, as well as easy-to-peel adhesion. The combined advantages make the present ionic elastomer very promising in wearable iontronic sensors for human-machine interfacing. Ionic skins are of interest for a range of electronic, sensing and interfacing applications but often have trade-offs in properties. Here, the authors report on the creation of a dual network ionic skin using a supramolecular zwitterionic competing network to produce a strain-stiffening, self-healing adhesive sensor.
Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks
Most tough hydrogels are reinforced by introducing energy dissipation mechanisms, but simultaneously realizing a high toughness and low hysteresis is challenging because the energy dissipation structure cannot recover rapidly. In this work, high mechanical performance highly entangled double network hydrogels without energy dissipation structure are fabricated, in which physical entanglements act as the primary effective crosslinking in the first network. This sliding entanglement structure allows the hydrogel network to form a highly uniform oriented structure during stretching, resulting in a high tensile strength of ~3 MPa, a fracture energy of 8340 J m −2 and a strain-stiffening capability of 47.5 in 90% water content. Moreover, almost 100% reversibility is obtained in this hydrogel via energy storage based on entropy loss. The highly entangled double network structure not only overcomes the typical trade-off between the high toughness and low hysteresis of hydrogels, but more importantly, it provides an insight into the application of entanglement structures in high-performance hydrogels. Tough hydrogels commonly utilise energy dissipation mechanisms, but this can lead to challenges in achieving low hysteresis. Here, the authors report a hydrogel with a highly entangled double network that allows reversibility following stretching.
Mesh moving techniques in fluid-structure interaction: robustness, accumulated distortion and computational efficiency
An important ingredient of any moving-mesh method for fluid-structure interaction (FSI) problems is the mesh moving technique (MMT) used to adapt the computational mesh in the moving fluid domain. An ideal MMT is computationally inexpensive, can handle large mesh motions without inverting mesh elements and can sustain an FSI simulation for extensive periods of time without irreversibly distorting the mesh. Here we compare several commonly used MMTs which are based on the solution of elliptic partial differential equations, including harmonic extension, bi-harmonic extension and techniques based on the equations of linear elasticity. Moreover, we propose a novel MMT which utilizes ideas from continuation methods to efficiently solve the equations of nonlinear elasticity and proves to be robust even when the mesh undergoes extreme motions. In addition to that, we study how each MMT behaves when combined with the mesh-Jacobian-based stiffening. Finally, we evaluate the performance of different MMTs on a popular two-dimensional FSI benchmark reproduced by using an isogeometric partitioned solver with strong coupling.
Three-dimensional mechanical metamaterials with a twist
Rationally designed artificial materials enable mechanical properties that are inaccessible with ordinary materials. Pushing on an ordinary linearly elastic bar can cause it to be deformed in many ways. However, a twist, the counterpart of optical activity in the static case, is strictly zero. The unavailability of this degree of freedom hinders applications in terms of mode conversion and the realization of advanced mechanical designs using coordinate transformations. Here, we aim at realizing microstructured three-dimensional elastic chiral mechanical metamaterials that overcome this limitation. On overall millimeter-sized samples, we measure twists per axial strain exceeding 2°/%. Scaling up the number of unit cells for fixed sample dimensions, the twist is robust due to metamaterial stiffening, indicating a characteristic length scale and bringing the aforementioned applications into reach.
A novel shear-stiffening supramolecular material derived from diboron structure
Shear-stiffening polyborosiloxane (PBS), well-known as “silly putty”, “bouncing putty” or “solid-liquid”, has been widely used in protective armors, sport equipment, toys and so on, due to its fascinating anti-impact property. Since it was created during World War II, there has been rare upgrade of the material. Herein, we synthesize a novel shear-stiffening material, polydiborosiloxane (PDBS), through the design of diboron/oxygen coordination bond. It is revealed that the diboron/oxygen coordination bond possesses more coordination states and higher bond energy than the coordination bond between monoboron and oxygen atoms, leading to a shear-stiffening behavior with more solid-like property. Therefore, PDBS exhibits superior anti-impact property and safeguarding performance to PBS. This shear-stiffening material will open up a new horizon for next-generation intelligent armors, dampers and sensors.
A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour
Auxetic behaviour, the unphysical transverse expansion during uniaxial tension, is a common and undesirable feature of classical anisotropic hyperelastic constitutive models for soft tissue. In this study we uncover the underlying mechanism of such behaviour; high levels of in-plane compaction occurs due to increasing tension in strain-stiffening fibres, leading to unphysical out-of-plane expansion. We demonstrate that auxetic behaviour is primarily influenced by the ratio of fibre to matrix stiffness, and is accentuated by strain-stiffening fibres in a constant stiffness matrix (e.g., the widely used neo-Hookean matrix with exponentially stiffening fibres). We propose a new bilinear strain stiffening fibre and matrix (BLFM) model which allows close control of the fibre-matrix stiffness ratio, thereby robustly eliminating auxetic behaviour. We demonstrate that our model provides accurate prediction of experimentally observed out-of-plane compaction, in addition to stress-stretch anisotropy, for arterial tissue subjected to uniaxial tension testing.
Realizing the potential of dielectric elastomer artificial muscles
Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4–40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/μm without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.