Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
242
result(s) for
"Stimulator of interferon genes"
Sort by:
Mitochondrial Damage‐Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease‐Associated Plaque Vulnerability
by
Wang, Xue‐Yue
,
Bi, Xianjin
,
Xiong, Jiachuan
in
Apoptosis
,
atherosclerosis
,
chronic kidney disease
2021
Chronic kidney disease (CKD) is associated with accelerated atherosclerosis progression and high incidence of cardiovascular events, hinting that atherosclerotic plaques in CKD may be vulnerable. However, its cause and mechanism remain obscure. Here, it is shown that apolipoprotein E‐deficient (ApoE−/−) mouse with CKD (CKD/ApoE−/− mouse) is a useful model for investigating the pathogenesis of plaque vulnerability, and premature senescence and phenotypic switching of vascular smooth muscle cells (VSMCs) contributes to CKD‐associated plaque vulnerability. Subsequently, VSMC phenotypes in patients with CKD and CKD/ApoE−/− mice are comprehensively investigated. Using multi‐omics analysis and targeted and VSMC‐specific gene knockout mice, VSMCs are identified as both type‐I‐interferon (IFN‐I)‐responsive and IFN‐I‐productive cells. Mechanistically, mitochondrial damage resulting from CKD‐induced oxidative stress primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway to trigger IFN‐I response in VSMCs. Enhanced IFN‐I response then induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner, resulting in the loss of fibrous cap VSMCs and fibrous cap thinning. Conversely, blocking IFN‐I response remarkably attenuates CKD‐associated plaque vulnerability. These findings reveal that IFN‐I response in VSMCs through immune sensing of mitochondrial damage is essential for the pathogenesis of CKD‐associated plaque vulnerability. Mitigating IFN‐I response may hold promise for the treatment of CKD‐associated cardiovascular diseases. Oxidative stress‐induced mitochondrial damage under chronic kidney disease (CKD) milieu primes the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway in vascular smooth muscle cells (VSMCs) to trigger type‐I‐interferon response, which induces VSMC premature senescence and phenotypic switching in an autocrine/paracrine manner and finally results in plaque vulnerability.
Journal Article
Porphyromonas gingivalis Outer Membrane Vesicles Stimulate Gingival Epithelial Cells to Induce Pro-Inflammatory Cytokines via the MAPK and STING Pathways
2022
Porphyromonas gingivalis (Pg) is a keystone pathogen associated with chronic periodontitis and produces outer membrane vesicles (OMVs) that contain lipopolysaccharide (LPS), gingipains, and pathogen-derived DNA and RNA. Pg-OMVs are involved in the pathogenesis of periodontitis. Pg-OMV-activated pathways that induce the production of the pro-inflammatory cytokines, interleukin (IL)-6, and IL-8 in the human gingival epithelial cell line, OBA-9, were investigated. The role of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB in levels of Pg-OMV-induced pro-inflammatory cytokines was investigated using Western blot analysis and specific pathway inhibitors. Pg-OMVs induced IL-6 and IL-8 production via the extracellular signal-regulated kinase (Erk) 1/2, c-Jun N-terminal kinase (JNK), p38 MAPK, and NF-κB signaling pathways in OBA-9 cells. In addition, the stimulator of interferon genes (STING), an essential innate immune signaling molecule, was triggered by a cytosolic pathogen DNA. Pg-OMV-induced IL-6 and IL-8 mRNA expression and production were significantly suppressed by STING-specific small interfering RNA. Taken together, these results demonstrated that Pg-OMV-activated Erk1/2, JNK, p38 MAPK, STING, and NF-κB signaling pathways resulting in increased IL-6 and IL-8 expression in human gingival epithelial cells. These results suggest that Pg-OMVs may play important roles in periodontitis exacerbation by stimulating various pathways.
Journal Article
STING Agonists as Cancer Therapeutics
by
Luke, Jason
,
Chelvanambi, Manoj
,
Amouzegar, Afsaneh
in
Adaptive immunity
,
Agonists
,
Antigen presentation
2021
The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery systems that would allow for sustained inflammation in the tumor microenvironment could potentially augment response rates to current immunotherapy approaches and overcome acquired resistance. In this review, we will focus on the latest developments in STING-targeted therapies and provide an update on the clinical development and application of STING agonists administered alone, or in combination with immune checkpoint blockade or other approaches.
Journal Article
Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation
2022
Macrophage‐stimulator of interferon genes (STING) signaling mediated sterile inflammation has been implicated in various age‐related diseases. However, whether and how macrophage mitochondrial DNA (mtDNA) regulates STING signaling in aged macrophages remains largely unknown. We found that hypoxia‐reoxygenation (HR) induced STING activation in macrophages by triggering the release of macrophage mtDNA into the cytosol. Aging promoted the cytosolic leakage of macrophage mtDNA and enhanced STING activation, which was abrogated upon mtDNA depletion or cyclic GMP‐AMP Synthase (cGAS) inhibition. Aged macrophages exhibited increased mitochondrial injury with impaired mitophagy. Mechanistically, a decline in the PTEN‐induced kinase 1 (PINK1)/Parkin‐mediated polyubiquitination of mitochondria was observed in aged macrophages. Pink1 overexpression reversed the inhibition of mitochondrial ubiquitination but failed to promote mitolysosome formation in the aged macrophages. Meanwhile, aging impaired lysosomal biogenesis and function in macrophages by modulating the mTOR/transcription factor EB (TFEB) signaling pathway, which could be reversed by Torin‐1 treatment. Consequently, Pink1 overexpression in combination with Torin‐1 treatment restored mitophagic flux and inhibited mtDNA/cGAS/STING activation in aged macrophages. Moreover, besides HR‐induced metabolic stress, other types of oxidative and hepatotoxic stresses inhibited mitophagy and promoted the cytosolic release of mtDNA to activate STING signaling in aged macrophages. STING deficiency protected aged mice against diverse types of sterile inflammatory liver injuries. Our findings suggest that aging impairs mitophagic flux to facilitate the leakage of macrophage mtDNA into the cytosol and promotes STING activation, and thereby provides a novel potential therapeutic target for sterile inflammatory liver injury in aged patients. Metabolic, oxidative stress and drug toxicity induced stress causes macrophage mitochondrial damage to promote cytosolic mtDNA release and STING activation. Mitophagy serves as an important negative feedback regulatory mechanism to mediate STING activation by degrading damaged mitochondia. Aging impairs mitophagy activation by inhibiting PINK1‐mediated mitochondrial ubiquitination and lysosome biogenesis and function.
Journal Article
STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease
2013
Emerging evidence suggests that innate immunity drives alcoholic liver disease (ALD) and that the interferon regulatory factor 3 (IRF3),a transcription factor regulating innate immune responses, is indispensable for the development of ALD. Here we report that IRF3 mediates ALD via linking endoplasmic reticulum (ER) stress with apoptotic signaling in hepatocytes. We found that ethanol induced ER stress and triggered the association of IRF3 with the ER adaptor, stimulator of interferon genes (STING), as well as subsequent phosphorylation of IRF3. Activated IRF3 associated with the proapoptotic molecule Bax [B-cell lymphoma 2 (Bcl2)-associated X protein] and contributed to hepatocyte apoptosis. Deficiency of STING prevented IRF3 phosphorylation by ethanol or ER stress, and absence of IRF3 prevented hepatocyte apoptosis. The pathogenic role of IRF3 in ALD was independent of inflammation or Type-I interferons. Thus, STING and IRF3 are key determinants of ALD, linking ER stress signaling with the mitochondrial pathway of hepatocyte apoptosis.
Journal Article
STING activation in cancer immunotherapy
2019
Cancer immunotherapy modulates and leverages the host immune system to treat cancer. The past decade has witnessed historical advancement of cancer immunotherapy. A myriad of approaches have been explored to elicit or augment anticancer innate immunity and/or adaptive immunity. Recently, activation of stimulator of interferon (IFN) genes (STING), an intracellular receptor residing in the endoplasmic reticulum, has shown great potential to enhance antitumor immunity through the induction of a variety of pro-inflammatory cytokines and chemokines, including type I IFNs. A number of natural and synthetic STING agonists have been discovered or developed, and tested in preclinical models and in the clinic for the immunotherapy of diseases such as cancer and infectious diseases. Cyclic dinucleotides (CDNs), such as cyclic dimeric guanosine monophosphate (c-di-GMP), cyclic dimeric adenosine monophosphate (c-di-AMP), and cyclic GMP-AMP (cGAMP), are a class of STING agonists that can elicit immune responses. However, natural CDNs are hydrophilic small molecules with negative charges and are susceptible to enzymatic degradation, leading to low bioavailability in target tissues yet unwanted toxicities and narrow therapeutic windows. Drug delivery systems, coupled with nucleic acid chemistry, have been exploited to address these challenges. Here, we will discuss the underlying immunological mechanisms and approaches to STING activation, with a focus on the delivery of STING agonists, for cancer immunotherapy.
Journal Article
Aging aggravated liver ischemia and reperfusion injury by promoting STING‐mediated NLRP3 activation in macrophages
by
Wang, Xuehao
,
Zhong, Weizhe
,
Rao, Jianhua
in
Aging
,
and reperfusion injury
,
Biological response modifiers
2020
Although aggravated liver injury has been reported in aged livers post‐ischemia and reperfusion (IR), the underlying mechanism of innate immune activation of aged macrophages is not well understood. Here, we investigated whether and how Stimulator of interferon genes (STING) signaling regulated macrophage proinflammatory activation and liver IR injury. Mice were subjected to hepatic IR in vivo. Macrophages isolated from IR‐stressed livers and bone marrow‐derived macrophages (BMDMs) from young and aged mice were used for in vitro studies. Enhanced nucleotide‐binding domain and leucine‐rich repeat containing protein 3 (NLRP3) activation was found in both livers and macrophages of aged mice post‐IR. NLRP3 knockdown in macrophages inhibited intrahepatic inflammation and liver injury in both young and aged mice. Interestingly, enhanced activation of the STING/ TANK‐binding kinase 1 (TBK1) signaling pathway was observed in aged macrophages post‐IR and mitochondria DNA (mtDNA) stimulation. STING suppression blocked over‐activation of NLRP3 signaling and excessive secretion of proinflammatory cytokines/chemokines in the mtDNA‐stimulated BMDMs from aged mice. More importantly, STING knockdown in macrophages abrogated the detrimental role of aging in aggravating liver IR injury and intrahepatic inflammation. Finally, peripheral blood from the recipients undergoing liver transplantation was collected and analyzed. The results showed that the elderly recipients had much higher levels of TNF‐α, IL‐6, IL‐1β, and IL‐18 post‐transplantation, indicating increased NLRP3 activation in lR‐stressed livers of elderly recipients. In summary, our study demonstrated that the STING‐NLRP3 axis was critical for the proinflammatory response of aged macrophages and would be a novel therapeutic target to reduce IR injury in elderly patients. Liver IR triggered mtDNA release from stressed hepatocytes. Aging promoted STING over‐activation, leading to enhanced NLRP3 inflammasome activation and increased proinflammatory cytokines/chemokines production of macrophages, which ultimately aggravated IR injury.
Journal Article
Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects
by
Niu, Nan
,
Li, Ke-Yu
,
Wang, Jian-Xin
in
Cancer vaccine
,
Immunotherapy
,
Pancreatic ductal adenocarcinoma
2020
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is non-immunogenic, which consists of the stellate cells, fibroblasts, immune cells, extracellular matrix, and some other immune suppressive molecules. This low tumor perfusion microenvironment with physical dense fibrotic stroma shields PDAC from traditional antitumor therapies like chemotherapy and various strategies that have been proven successful in other types of cancer. Immunotherapy has the potential to treat minimal and residual diseases and prevent recurrence with minimal toxicity, and studies in patients with metastatic and nonresectable disease have shown some efficacy. In this review, we highlighted the main components of the pancreatic tumor microenvironment, and meanwhile, summarized the advances of some promising immunotherapies for PDAC, including checkpoint inhibitors, chimeric antigen receptors T cells, and cancer vaccines. Based on our previous researches, we specifically discussed how granulocyte-macrophage colony stimulating factor based pancreatic cancer vaccine prime the pancreatic tumor microenvironment, and introduced some novel immunoadjuvants, like the stimulator of interferon genes.
Journal Article
Moderate Intensity of Treadmill Exercise Rescues TBI-Induced Ferroptosis, Neurodegeneration, and Cognitive Impairments via Suppressing STING Pathway
by
Jin, Jungong
,
Chen, Zhennan
,
Yu, Dongyu
in
Biomedical and Life Sciences
,
Biomedicine
,
Cell Biology
2023
Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI. In addition to cytokine induction, recent evidence has demonstrated the involvement of the stimulator of interferon genes (STING) pathway in ferroptosis. Therefore, we examined the possibility that treadmill exercise might inhibit TBI-induced ferroptosis via STING pathway. In this study, we first found that a series of ferroptosis-related characteristics, including abnormal iron homeostasis, decreased glutathione peroxidase 4 (Gpx4), and increased lipid peroxidation, were detected at 44 days post TBI, substantiating the involvement of ferroptosis at the chronic stage following TBI. Furthermore, treadmill exercise potently decreased the aforementioned ferroptosis-related changes, suggesting the anti-ferroptosis role of treadmill exercise following TBI. In addition to alleviating neurodegeneration, treadmill exercise effectively reduced anxiety, enhanced spatial memory recovery, and improved social novelty post TBI. Interestingly, STING knockdown also obtained the similar anti-ferroptosis effects after TBI. More importantly, overexpression of STING largely reversed the ferroptosis inactivation caused by treadmill exercise following TBI. To conclude, moderate-intensity treadmill exercise rescues TBI-induced ferroptosis and cognitive deficits at least in part via STING pathway, broadening our understanding of neuroprotective effects induced by treadmill exercise against TBI.
Journal Article
A Mutation Outside the Dimerization Domain Causing Atypical STING-Associated Vasculopathy With Onset in Infancy
by
De Nardo, Dominic
,
Moghaddas, Fiona
,
Macintosh, Rebecca
in
Amino acids
,
Antigens
,
C-reactive protein
2018
Mutations in the gene encoding stimulator of interferon genes (STING) underlie a type I interferon (IFN) associated disease, STING-associated vasculopathy with onset in infancy (SAVI). Patients suffer cutaneous vasculopathy and interstitial lung disease, but are not known to suffer life-threatening infection.
We describe a child who presented with
pneumonia in early life, from which he recovered. He went on to suffer failure to thrive, developmental delay, livedo reticularis, and vesicular rash, but without cutaneous vasculitis, and with normal C-reactive protein and erythrocyte sedimentation rates. At 3 years of age, he developed life-threatening pulmonary hypertension.
Whole genome sequencing (WGS) was performed using the Illumina HiSeqX10 platform and the Seave platform was used for bioinformatic analysis. mRNA expression of IFN-stimulated genes and inflammatory cytokines from peripheral blood mononuclear cells was determined by quantitative polymerase chain reaction. Luciferase assay was used to model IFNβ and NF-κB activity
.
WGS revealed a
mutation p.Arg284Ser in STING at an amino acid previously associated with SAVI. Although this mutation did not fall in the dimerization domain (DD), mRNA analysis revealed constitutive IFN-gene activation consistent with an interferonopathy, which correlated to STING activation
. The patient was treated with corticosteroids and the JAK inhibitor Ruxolitinib, resulting in a rapid improvement of pulmonary hypertension, general well-being, and resolution of the IFN gene signature. However, he did go on to evolve a nasal septal erosion suggesting incomplete control of disease.
This case provides molecular evidence to support the p.Arg284Ser variant in STING exerting pathogenicity through a gain-of-function mechanism. The lack of cutaneous vasculitis or elevated systemic inflammatory markers, and the occurrence of an opportunistic infection are notable, and raise the possibility that variants outside the STING DD may potentially manifest with an atypical SAVI phenotype. Nevertheless, there was an objective clinical improvement in response to JAK inhibition.
Journal Article