Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
439
result(s) for
"Stokes vector"
Sort by:
Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light
by
Chen, Yahong
,
Cai, Yangjian
,
Liu, Yonglei
in
Coherence Stokes vector
,
Color image encoding
,
Engineering
2024
Optical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities. In this work, we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam. By characterizing the beam’s spatial coherence structure with a
2
×
2
coherence matrix, we demonstrate independent control over the three components of the coherence Stokes vector. This allows for three-channel optical information encoding and encryption, with applications in color image representation. Unlike existing methods based on fully coherent light modulations, our approach utilizes a two-point dependent coherence Stokes vector, proving resilient to random noise in experimental scenarios. Our findings provide a robust foundation for higher-dimensional optical encoding and encryption, addressing limitations associated with partially coherent light in complex environments.
Journal Article
Design of Partial Mueller-Matrix Polarimeters for Application-Specific Sensors
2025
At a particular frequency, most materials and objects of interest exhibit a polarization signature, or Mueller matrix, of limited dimensionality, with many matrix elements either negligibly small or redundant due to symmetry. Robust design of a polarization sensor for a particular material or object of interest, or for an application with a limited set of materials or objects, will adapt to the signature subspace, as well as the available modulators, in order to avoid unnecessary measurements and hardware and their associated budgets, errors, and artifacts. At the same time, measured polarization features should be expressed in the Stokes–Mueller basis to allow use of known phenomenology for data interpretation and processing as well as instrument calibration and troubleshooting. This approach to partial Mueller-matrix polarimeter (pMMP) design begins by defining a vector space of reduced Mueller matrices and an instrument vector representing the polarization modulators and other components of the sensor. The reduced-Mueller vector space is proven to be identical to R15 and to provide a completely linear description constrained to the Mueller cone. The reduced irradiance, the inner product of the reduced instrument and target vectors, is then applied to construct classifiers and tune modulator parameters, for instance to maximize representation of a specific target in a fixed number of measured channels. This design method eliminates the use of pseudo-inverses and reveals the optimal channel compositions to capture a particular signature feature, or a limited set of features, under given hardware constraints. Examples are given for common optical division-of-amplitude (DoA) 2-channel passive and serial/DoT-DoA 4-channel active polarimeters with rotating crystal modulators for classification of targets with diattenuation and depolarization characteristics.
Journal Article
Low-Light Sparse Polarization Demosaicing Network (LLSPD-Net): Polarization Image Demosaicing Based on Stokes Vector Completion in Low-Light Environment
2024
Polarization imaging has achieved a wide range of applications in military and civilian fields such as camouflage detection and autonomous driving. However, when the imaging environment involves a low-light condition, the number of photons is low and the photon transmittance of the conventional Division-of-Focal-Plane (DoFP) structure is small. Therefore, the traditional demosaicing methods are often used to deal with the serious noise and distortion generated by polarization demosaicing in low-light environment. Based on the aforementioned issues, this paper proposes a model called Low-Light Sparse Polarization Demosaicing Network (LLSPD-Net) for simulating a sparse polarization sensor acquisition of polarization images in low-light environments. The model consists of two parts: an intensity image enhancement network and a Stokes vector complementation network. In this work, the intensity image enhancement network is used to enhance low-light images and obtain high-quality RGB images, while the Stokes vector is used to complement the network. We discard the traditional idea of polarization intensity image interpolation and instead design a polarization demosaicing method with Stokes vector complementation. By using the enhanced intensity image as a guide, the completion of the Stokes vector is achieved. In addition, to train our network, we collected a dataset of paired color polarization images that includes both low-light and regular-light conditions. A comparison with state-of-the-art methods on both self-constructed and publicly available datasets reveals that our model outperforms traditional low-light image enhancement demosaicing methods in both qualitative and quantitative experiments.
Journal Article
A Geometric Model for Polarization Imaging on Projective Cameras
2024
The vast majority of Shape-from-Polarization (SfP) methods work under the oversimplified assumption of using orthographic cameras. Indeed, it is still unclear how Stokes vector projection behaves when the incoming rays are not orthogonal to the image plane. In this paper, we try to answer this question with a new geometric model describing how a general projective camera captures the light polarization state. Based on the optical properties of a tilted polarizer, our model is implemented as a pre-processing operation acting on raw images, and a scene-independent rotation of the reconstructed normal field. Moreover, our model is consistent with state-of-the-art forward and inverse renderers (as Mitsuba3 and ART), intrinsically enforces physical constraints among the captured channels, and handles the demosaicing of DoFP sensors. Experiments on existing and new datasets demonstrate the accuracy of the model when applied to commercially available polarimetric cameras.
Journal Article
Principle and Implementation of Stokes Vector Polarization Imaging Technology
2022
Compared with traditional imaging methods, polarization imaging has its unique advantages in many directions and has great development prospects. It is one of the hot spots of research and development at home and abroad. Based on the polarization imaging principle of Stokes vector, the realization methods of non-simultaneous polarization imaging and simultaneous polarization imaging are introduced, respectively according to the different polarization modulation methods of Stokes vector acquisition. Non-simultaneous polarization imaging is mainly introduced in two ways: rotary polarization imaging, electrically controlled polarization imaging, and the simultaneous polarization imaging is mainly introduced in three ways: divided amplitude polarization imaging, divided aperture polarization imaging, and divided focal plane polarization imaging. In this paper, the principle and realization of polarization imaging based on Stokes vector are introduced to boost the application of polarization imaging and promote the research and development of polarization imaging technology.
Journal Article
A simple pathway for complete polarization vision
2025
This paper introduces a novel method for achieving complete polarization vision through a full-Stokes polarization camera. Our technique employs a homogeneous dispersive retarder placed before a polarization sensor to harness wavelength-dependent retardation, enabling the differentiation of polarization states across the sensor’s color channels. Assuming weak wavelength dependence of polarization for incoming light, this method facilitates the real-time, simultaneous measurement of the complete Stokes vector of incident light. This method provides a streamlined, versatile, and practical solution with broad potential applications in imaging, remote sensing, and augmented reality.
Journal Article
Full-Stokes Retrieving and Configuration Optimization in a Time-Integration Imaging Polarimeter
by
Huang, Linhai
,
Lian, Bowen
,
Gu, Naiting
in
Accuracy
,
configuration optimization
,
full-Stokes vector retrieving
2022
A time-integration imaging polarimeter with continuous rotating retarder is presented, and its full-Stokes retrieving and configuration optimization are also demonstrated. The mathematical expression between the full-Stokes vector and the time-integration light intensities is derived. As a result, the state of polarization of incident light can be retrieved by only one matrix calculation. However, the modulation matrix deviates from the initial well-conditioned status due to time integration. Thus, we re-optimize the nominal angles for the special retardance of 132° and 90° with an exposure angle of 30°, which results in a reduction of 31.8% and 16.8% of condition numbers comparing to the original configuration, respectively. We also give global optimization results under different exposure angles and retardance of retarder; as a result, the 137.7° of retardance achieves a minimal condition number of 2.0, which indicates a well-conditioned polarimeter configuration. Besides, the frame-by-frame algorithm ensures the dynamic performance of the presented polarimeter. For a general brushless DC motor with a rotating speed of over 2000 rounds per minute, the speed of polarization imaging will achieve up to 270 frames per second. High precision and excellent dynamic performance, together with features of compactness, simplicity, and low cost, may give this traditional imaging polarimeter new life and attractive prospects.
Journal Article
Constructing a portable optical polarimetry probe for in-vivo skin cancer detection
2021
Significance: Management of skin cancer worldwide is often a challenge of scale, in that the number of potential cases presented outweighs the resources available to detect and treat skin cancer.
Aim: This project aims to develop a polarimetry probe to create an accessible skin cancer detection tool.
Approach: An optical probe was developed to perform bulk tissue Stokes polarimetry, a technique in which a laser of known polarization illuminates a target, and the altered polarization state of the backscattered light is measured. Typically, measuring a polarization state requires four sequential measurements with different orientations of polarization filters; however, this probe contains four spatially separated detectors to take four measurements in one shot. The probe was designed to perform at a lower cost and higher speed than conventional polarimetry methods. The probe uses photodiodes and linear and circular film polarizing filters as detectors, and a low-coherence laser diode as its illumination source. The probe design takes advantage of the statistical uniformity of the polarization speckle field formed at the detection area.
Results: Tests of each probe component, and the complete system put together, were performed to evaluate error and confirm the probe’s performance despite its low-cost components. This probe’s potential is demonstrated in a pilot clinical study on 71 skin lesions. The degree of polarization was found to be a factor by which malignant melanoma could be separated from other types of skin lesions.
Journal Article
Polarization Calibration of the Solar Optical Telescope onboard Hinode
by
Hoffmann, C.
,
Card, G.
,
Nakagiri, M.
in
Astrophysics and Astroparticles
,
Atmospheric Sciences
,
Calibration
2008
The Solar Optical Telescope (SOT) onboard
Hinode
aims to obtain vector magnetic fields on the Sun through precise spectropolarimetry of solar spectral lines with a spatial resolution of 0.2 – 0.3 arcsec. A photometric accuracy of 10
−3
is achieved and, after the polarization calibration, any artificial polarization from crosstalk among Stokes parameters is required to be suppressed below the level of the statistical noise over the SOT’s field of view. This goal was achieved by the highly optimized design of the SOT as a polarimeter, extensive analyses and testing of optical elements, and an end-to-end calibration test of the entire system. In this paper we review both the approach adopted to realize the high-precision polarimeter of the SOT and its final polarization characteristics.
Journal Article
Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution
by
Porfirev, Aleksey P.
,
Khonina, Svetlana N.
in
Angular momentum
,
Crystallography
,
Density distribution
2022
We propose vector modes based on inhomogeneously polarized Hermite–Gaussian (HG) vector beams, providing complete structural conservation of the beams during propagation. Like uniformly polarized mode beams, these beams provide structural stability (or invariance) of both the intensity and the polarization state, in turn ensuring the stability of other field characteristics, including the angular momentum. We determine the conditions imposed on the HG mode composition in the transverse components of the electromagnetic field in order to control the three-dimensional characteristics of the field, such as intensity, polarization, and spin angular momentum (SAM). For the visual analysis of the polarization state of inhomogeneously polarized beams, we use the transverse distribution of the vector of three Stokes parameters. The correspondence of the third Stokes parameter to the distribution of the longitudinal component of the SAM is used for experimental measurements. The theoretical analysis is clearly illustrated by numerical simulations and confirmed by experimental results.
Journal Article