Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
37,705 result(s) for "Storage batteries."
Sort by:
Energy storage
From mobile devices to the power grid, the needs for high-energy density or high-power density energy storage materials continue to grow. Materials that have at least one dimension on the nanometer scale offer opportunities for enhanced energy storage, although there are also challenges relating to, for example, stability and manufacturing. In this context, Pomerantseva et al. review fundamental processes of charge storage that apply specifically to nanostructured materials and briefly explore potential manufacturing processes. The authors also consider some of the skepticism, such as that found in the battery community, to the use of these materials. Science , this issue p. eaan8285 Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.
Principles and applications of lithium secondary batteries
Lithium secondary batteries have been key to mobile electronics since 1990.Large-format batteries typically for electric vehicles and energy storage systems are attracting much attention due to current energy and environmental issues.Lithium batteries are expected to play a central role in boosting green technologies.
Practical Battery Design and Control
Battery technologies play a vital role in day-to-day life, and with the continued growth of the battery market, there is an increasing demand for a comprehensive text such as this, that encompasses aspects of electrochemistry, materials science, physical chemistry, and machine learning. Aimed at early-to-mid career battery engineers, this book addresses common problems that are likely to be encountered on the job. This book discusses several topics, including the prediction of battery longevity, how to extend battery life with machine learning algorithms, cost reduction and sustainability, and battery charging problems relating to wearables, electric vehicles, drones, smart phones, laptops, and portable devices. Designed to help readers obtain practical knowledge through intuitive explanations and broad coverage of battery topics, this one-of-a-kind book is a must have resource for practicing battery engineers throughout their career.
Coordinated demand response of rail transit load and energy storage system in considering driving comfort
Electric trains typically travel across the railway networks in an inter-provincial, inter-city and intra-city manner. The electric train generally serves as a load/source in tractive/brake mode, through which power networks and railway networks are closely coupled and mutually influenced. Based on the operational mode of rail trains and the characteristics of their load power, this paper proposes a coordinated optimal decisionmaking method of demand response for controllable load of rail trains and energy storage systems. First, a coordinated approach of dynamically adjusting the load of the controllable rail train in considering the driving comfort and energy storage battery is designed. Secondly, under the time conditions that satisfy the train's operational diagram, the functional relationship between the train speed and the load power is presented. Based on this, in considering the constraints of the train's arrival time, driving speed, motor power, and driving comfort, the capacity of energy storage batteries and other constraints, an optimization model for demand response in managing the traction power supply system under a two-part price and time-of-use (TOU) price is proposed. The objective is to minimize the energy consumption costs of rail transit trains, and optimize the speed trajectory of rail trains, the load power of traction system, and the output of energy storage batteries.
Electrochemical batteries for smart grid applications
This paper presents a comprehensive review of current trends in battery energy storage systems, focusing on electrochemical storage technologies for Smart Grid applications. Some of the batteries that are in focus for improvement include Lithium-ion, metal-air, Sodium-based batteries and flow batteries. A descriptive review of these batteries and their sub-types are explained along with their suitable applications. An overview of different types and classification of storage systems has been presented in this paper. It also presents an extensive review on different electrochemical batteries, such as lead-acid battery, lithium-based, nickel-based batteries and sodium-based and flow batteries for the purpose of using in electric vehicles in future trends. This paper is going to explore each of the available storage techniques out there based on various characteristics including cost, impact, maintenance, advantages, disadvantages, and protection and potentially make a recommendation regarding an optimal storage technique.
Modeling of battery pack sizing for electric vehicles
The paper presents the mathematical modeling for battery pack sizing to evaluate the vehicle energy consumption by using the derivation from Parametric Analytical Model of Vehicle Energy Consumption (PAMVEC) by Simpson in R Studio. The assess of storage batteries for electric vehicles (EVs) application is presented in this paper. The main source of power in EVs are batteries and to properly optimize their use in them, a parametric vehicle dynamic model is created and factors like battery mass, energy needed for the EV etc. are predicted using inputs such as battery specific energy, range etc. An assessment of output parameters is performed by using different batteries and compared to determine best battery for EV application.
An investigation of battery storage operating strategies in the context of smart cities
PurposeThe ongoing urbanization and decarbonization require deployment of energy storage in the urban energy system to integrate large-scale variable renewable energy (VRE) into the power grids. The cost reductions of batteries enable private entities to invest energy storage for energy management whose operating strategy may differ from traditional storage facilities. This study aims to investigate the impacts of energy storage on the power system with different operation strategies. Two strategies are modeled through a simulation-based regional economic power dispatch model. The profit-oriented strategy denotes the storage system operated by private entities for price arbitrage, and the nonprofit-oriented strategy denotes the storage system dispatched by an independent system operator (ISO) for the whole power system optimization. A case study of Jiangsu, China is conducted. The results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under a high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity. This study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.Design/methodology/approachThe authors characterize two battery storage operating strategies of profit- and nonprofit-oriented by adopting a simulation-based economic dispatch model. A simulation from 36 years of hourly weather data of wind and solar output from case study of Jiangsu, China is conducted.FindingsThe results show that the profit-oriented strategy only has a very limited impact on the cost reductions of power system and may even increase the cost for consumers. While nonprofit-oriented energy storage performs a positive effect on the system cost reduction. CO2 emission reduction can only be achieved under high VRE scenario for energy storage. Integrating energy storage into the power system may increase CO2 emissions in the near term. In addition, the peak-valley spread is crucial to trigger operations of profit-oriented energy storage, and the profitability of energy storage operator is observed to be decreasing with the total storage capacity.Originality/valueThis study provides new insights for the energy management in the smart city, and the modeling framework can be applied to regions with different resource endowments.
Prosumage of solar electricity
We examine the role of prosumage of solar electricity, i.e. PV self-generation combined with distributed storage, in the context of the low-carbon energy transformation. First, we devise a qualitative account of arguments in favor of and against prosumage. Second, we give an overview of prosumage in Germany. Prosumage will likely gain momentum as support payments expire for an increasing share of PV capacities after 2020. Third, we model possible system effects in a German 2035 scenario. Prosumage batteries allow for a notable substitution of other storage facilities only if fully available for market interactions. System-friendly operation would also help limiting cost increases. We conclude that policymakers should not unnecessarily restrict prosumage, but consider system and distributional aspects.
Lithium-Ion Batteries - Advances and Applications
This book features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. This book also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries.