Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
881
result(s) for
"Stratocumulus clouds"
Sort by:
Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific
by
Kang, Sarah M.
,
Kim, Hanjun
,
Kay, Jennifer E.
in
Bias
,
Climate models
,
Earth, Atmospheric, and Planetary Sciences
2022
Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern Ocean preferentially cools the southeastern tropical Pacific, thereby shifting the eastern tropical Pacific rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback. This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections from the Southern Ocean to the tropical Pacific are stronger than widely thought.
Journal Article
Study on the Vertical Structure and the Evolution of Precipitation Particle Spectrum Parameters of Stratocumulus Clouds over North China Based on Aircraft Observation
2023
The understanding of the macro- and micro-structure, particle spectrum parameters, and their evolutions in different parts of stratocumulus clouds based on aircraft observation data, is important basic data for the development of cloud microphysical parameterization schemes and the quantitative retrieval of cloud-precipitation by radar and satellite detections. In this study, a total of ten vertical measurements during three aircraft observations were selected to analyze the vertical distribution of cloud microphysical properties in different parts of stratocumulus clouds in Hebei, North China. It was found that the downdraft in the cumulus cloud area was stronger than that in the stratiform cloud area, with the temperature at the same height higher than that in the stratiform cloud area, and the height of the 0 °C layers was correspondingly higher. In terms of particle spectrum parameters, the intercept and slope parameters of particle spectrum below melting levels in the cumulus part were higher than those in stratiform clouds area in the same weather process. In different vertical detection, it was found that the ice particles have begun to melt in the negative temperature layer near 0 °C level, and there might be sublimation, fragmentation, and aggregation in the melting process of ice phase particles. In addition, the melting process changed the spectral parameters greatly and also changed the correlation between the intercept and slope of the particle spectrum. The slope below the 0 °C level increased with the increase of intercept, which was greater than that above the 0 °C level. The relationship obtained between the intercept parameter of the particle’s spectrum and temperature, and the correlation between the maximum diameter and slope parameter of the particle spectrum, have certain reference significance for cloud physical parameterization and the quantitative retrieval of cloud precipitation by radar and satellite in North China and similar climate background areas.
Journal Article
Cloud Mesoscale Cellular Classification and Diurnal Cycle Using a Convolutional Neural Network (CNN)
by
Nukrai, David
,
Che, Haochi
,
Segal Rozenhaimer, Michal
in
Aerosols
,
Algorithms
,
Artificial neural networks
2023
Marine stratocumulus (MSC) clouds are important to the climate as they cover vast areas of the ocean’s surface, greatly affecting radiation balance of the Earth. Satellite imagery shows that MSC clouds exhibit different morphologies of closed or open mesoscale cellular convection (MCC) but many limitations still exist in studying MCC dynamics. Here, we present a convolutional neural network algorithm to classify pixel-level closed and open MCC cloud types, trained by either visible or infrared channels from a geostationary SEVIRI satellite to allow, for the first time, their diurnal detection, with a 30 min. temporal resolution. Our probability of detection was 91% and 92% for closed and open MCC, respectively, which is in line with day-only detection schemes. We focused on the South-East Atlantic Ocean during months of biomass burning season, between 2016 and 2018. Our resulting MCC type area coverage, cloud effective radii, and cloud optical depth probability distributions over the research domain compare well with monthly and daily averages from MODIS. We further applied our algorithm on GOES-16 imagery over the South-East Pacific (SEP), another semi-permanent MCC domain, and were able to show good prediction skills, thereby representing the SEP diurnal cycle and the feasibility of our method to be applied globally on different satellite platforms.
Journal Article
The Implementation of Framework for Improvement by Vertical Enhancement Into Energy Exascale Earth System Model
by
Yamaguchi, Takanobu
,
Lee, Hsiang‐He
,
Bogenschutz, Peter
in
Advection
,
Bias
,
Boundary layer parameters
2021
The low cloud bias in global climate models (GCMs) remains an unsolved problem. Coarse vertical resolution in GCMs has been suggested to be a significant cause of low cloud bias because planetary boundary layer parameterizations cannot resolve sharp temperature and moisture gradients often found at the top of subtropical stratocumulus layers. This work aims to ameliorate the low cloud problem by implementing a new computational method, the Framework for Improvement by Vertical Enhancement (FIVE), into the Energy Exascale Earth System Model (E3SM). Three physics schemes representing microphysics, radiation, and turbulence as well as vertical advection are interfaced to vertically enhanced physics (VEP), which allows for these processes to be computed on a higher vertical resolution grid compared to the rest of the E3SM model. We demonstrate the better representation of subtropical boundary layer clouds with FIVE while limiting additional computational cost from the increased number of levels. When the vertical resolution approaches the large eddy simulation‐like vertical resolution in VEP, the climatological low cloud amount shows a significant increase of more than 30% in the southeastern Pacific Ocean. Using FIVE to improve the representation of low‐level clouds does not come with any negative side effects associated with the simulation of mid‐ and high‐level cloud and precipitation, that can occur when running the full model at higher vertical resolution. Plain Language Summary Most global climate models (GCMs) underestimate low‐level clouds. Increasing vertical resolution in GCMs is intended to address some of the issues contributing to the problem. In this study, we have implemented a new computational method, known as the Framework for Improvement by Vertical Enhancement (FIVE). FIVE can increase the vertical resolution for select aspects of a GCM, and in this study, we apply FIVE to the Energy Exascale Earth System Model. Our results show that when the vertical resolution approaches 5–10 m, the low cloud amount shows a significant increase of more than 30% in the southeastern Pacific Ocean, while the FIVE method also prevents the simulations from being too computationally expensive. Key Points A novel computational framework, Framework for Improvement by Vertical Enhancement (FIVE), has been implemented into Energy Exascale Earth System Model (E3SM) and allows select physics to be computed on a higher vertical grid When the vertical resolution approaches the large eddy simulation‐like in E3SM‐FIVE, the low cloud shows an increase of more than 30% in the Pacific Ocean E3SM‐FIVE is much less computationally expensive compared to E3SM with the same high vertical resolution
Journal Article
A sensitivity analysis of cloud properties to CLUBB parameters in the single‐column Community Atmosphere Model (SCAM5)
by
Zhao, Chun
,
Larson, Vincent E.
,
Wang, Minghuai
in
Atmosphere
,
Atmospheric models
,
boundary layer
2014
In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single‐column version of Community Atmosphere Model version 5 (SCAM5). A quasi‐Monte Carlo (QMC) sampling approach is adopted to effectively explore the high‐dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow cumulus cases are configured at both coarse and fine vertical resolutions in this study. Our results show that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy‐damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the vertical resolution while little sensitivity is found for the shallow cumulus cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties and provides valuable insights for other high‐order turbulence closure schemes. Key Points Most variances in cloud fields can be explained by a small number of parameters Results for stratocumulus are sensitive to vertical resolution Critical parameters in shallow cumulus are related to vertical velocity skewness
Journal Article
Near-Surface Density Currents Observed in the Southeast Pacific Stratocumulus-Topped Marine Boundary Layer
2015
Density currents (i.e., cold pools or outflows) beneath marine stratocumulus clouds are characterized using 30 days of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An air density increase criterion applied to the Improved Meteorological (IMET) sensor data identified 71 density current front, core (peak density), and tail (dissipating) zones. The similarity in speeds of the mean density current propagation speed (1.8 m s−1) and the mean cloud-level advection relative to the surface layer wind (1.9 m s−1) allowed drizzle cells to deposit elongated density currents in their wakes. Scanning Doppler lidar captured prefrontal updrafts with a mean intensity of 0.91 m s−1 and an average vertical extent of 800 m. Updrafts were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. The observed density currents were 5–10 times thinner and weaker than typical continental thunderstorm cold pools. Nearly 90% of density currents were identified when C-band radar estimated areal average rain rates exceeded 1 mm day−1 over a 30-km diameter. Rather than peaking when rain rates were highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurred with shallow subcloud dry and stable layers. The dry layers may have contributed to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occurred in a large region of predominantly open cells but also occurred in regions of closed cells.
Journal Article
Quantifying the effects of a low-ozone event and shallow stratocumulus clouds on ultraviolet erythemal radiation exposure
2019
Meteorological and dosimetric ultraviolet (UV) erythemal radiation (UVER) measurements were performed in Didcot, England, on 6 and 7 April 2017. Both days were characterized by clear-sky conditions in the morning and the afternoon with development of shallow stratocumulus clouds (SSC) around noon. In addition, a low-ozone event occurred on 7 April characterized by a 34 DU (Dobson Unit) drop in total stratospheric ozone content. Compared to 6 April, the ozone mini-hole caused UVER increases of 2.67 standard erythema dose (SED) for diffuse and 4.32 SED for global radiation characterized by radiation amplification factors (RAF) of 1.62 and 1.52, respectively. The total global UVER dose reductions due to SSC coverage amount to 2.33 SED (6 April) and 2.81 SED (7 April). As innovation the RAF is decomposed into two parts, named cloud ozone factor (COF) and radiation amplification factor based on measured data (RAFm), to quantify the low-ozone event’s effect and the SSC influence in independently modifying the UVER doses. Hereby, the weight of each of these two effects acting during the same low-ozone event is expressed by the new COF. In this case, the COF values range between −0.13 and −0.11 for diffuse UVER and −0.03 to −0.07 for the global UV and UV-B parts. A positive COF value (0.18) results for the global UV-A range.
Journal Article
Smoke and Clouds above the Southeast Atlantic
by
Haywood, James
,
Formenti, Paola
,
Redemann, Jens
in
ENVIRONMENTAL SCIENCES
,
INTERACTIONS
,
Investigations
2016
From July through October, smoke from biomass-burning (BB) fires on the southern African subcontinent is transported westward through the free troposphere over one of the largest stratocumulus cloud decks on our planet (Fig. 1). BB aerosol (smoke) absorbs shortwave radiation efficiently. This fundamental property implicates smoke within myriad small-scale processes with potential large-scale impacts on climate that are not yet well understood. A coordinated, international team of scientists from the United States, United Kingdom, France, South Africa, and Namibia will provide an unprecedented interrogation of this smoke-and-cloud regime from 2016 to 2018, using multiple aircraft and surface-based instrumentation suites to span much of the breadth of the southeast Atlantic.
Journal Article
Subdiurnal Stratocumulus Cloud Fraction Variability and Sensitivity to Precipitation
2015
This paper presents an analysis of subtropical marine stratocumulus cloud fraction variability using a 30-min and 3° × 3° cloud fraction dataset from 2003 to 2010. Each of the three subtropical marine stratocumulus regions has distinct diurnal characteristics, but the southeast (SE) Pacific and SE Atlantic are more similar to each other than to the northeast (NE) Pacific. The amplitude and season-to-season diurnal cycle variations are larger in the Southern Hemisphere regions than in the NE Pacific. Net overnight changes in cloud fraction on 3° × 3° scales are either positive or neutral >77% of the time in theNE Pacific and >88% of the time in the SE Pacific and SE Atlantic. Cloud fraction often increases to 100% by dawn when cloud fraction at dusk is >30%. In the SE Pacific and SE Atlantic, a typical decrease in cloud area (median ≤ −5.7 × 10⁵ km²) during the day is equivalent to 25% or more of the annual-mean cloud deck area. Time series for 3° × 3° areas where cloud fraction was ≥90% sometime overnight and <60% at dawn, such as would result from nocturnal formation of pockets of open cells (POCs), only occur 1.5%, 1.6%, and 3.3% of the time in the SE Pacific, SE Atlantic, and NE Pacific, respectively. Comparison of cloud fraction changes to ship-based radar and satellite-derived precipitation intensity and area measurements shows a lack of sensitivity of cloud fraction to drizzle on time scales of 1–3 h and spatial scales of 100–300 km.
Journal Article
Aerosol above-cloud direct radiative effect and properties in the Namibian region during the AErosol, RadiatiOn, and CLOuds in southern Africa airborne simulator and sun photometer measurements
by
Delegove, Cyril
,
Nicolas, Jean-Marc
,
Blarel, Luc
in
Analysis
,
Atmospheric circulation
,
Measurement
2021
We analyse the airborne measurements of above-cloud aerosols from the AErosol, RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign performed in Namibia during August and September 2017. The study aims to retrieve the aerosol above-cloud direct radiative effect (DRE) with well-defined uncertainties. To improve the retrieval of the aerosol and cloud properties, the airborne demonstrator of the Multi-Viewing, Multi-Channel, Multi-Polarization (3MI) satellite instrument, called the Observing System Including PolaRisation in the Solar Infrared Spectrum (OSIRIS), was deployed on-board the SAFIRE (Service des Avions Français Instrumentés pour la Rechercheen Environnement) Falcon 20 aircraft during 10 flights performed over land, over the ocean, and along the Namibian coast. The airborne instrument OSIRIS provides observations at high temporal and spatial resolutions for aerosol above clouds (AACs) and cloud properties. OSIRIS was supplemented with the Photomètre Léger Aéroporté pour la surveillance des Masses d'Air version 2 (PLASMA2). The combined airborne measurements allow, for the first time, the validation of AAC algorithms previously developed for satellite measurements. The variations in the aerosol properties are consistent with the different atmospheric circulation regimes observed during the deployment. Airborne observations typically show strong aerosol optical depth (AOD; up to 1.2 at 550 nm) of fine-mode particles from biomass burning (extinction Ãngström exponent varying between 1.6 and 2.2), transported above bright stratocumulus decks (mean cloud top around 1 km above mean sea level), with cloud optical thickness (COT) up to 35 at 550 nm. The above-cloud visible AOD retrieved with OSIRIS agrees within 10 % of the PLASMA2 sun photometer measurements in the same environment.
Journal Article