Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
200,606 result(s) for "Streams"
Sort by:
Principles for urban stormwater management to protect stream ecosystems
Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly insurmountable historical constraints, which guarantee future, ongoing degradation.
Global prevalence of non-perennial rivers and streams
Flowing waters have a unique role in supporting global biodiversity, biogeochemical cycles and human societies . Although the importance of permanent watercourses is well recognized, the prevalence, value and fate of non-perennial rivers and streams that periodically cease to flow tend to be overlooked, if not ignored . This oversight contributes to the degradation of the main source of water and livelihood for millions of people . Here we predict that water ceases to flow for at least one day per year along 51-60 per cent of the world's rivers by length, demonstrating that non-perennial rivers and streams are the rule rather than the exception on Earth. Leveraging global information on the hydrology, climate, geology and surrounding land cover of the Earth's river network, we show that non-perennial rivers occur within all climates and biomes, and on every continent. Our findings challenge the assumptions underpinning foundational river concepts across scientific disciplines . To understand and adequately manage the world's flowing waters, their biodiversity and functional integrity, a paradigm shift is needed towards a new conceptual model of rivers that includes flow intermittence. By mapping the distribution of non-perennial rivers and streams, we provide a stepping-stone towards addressing this grand challenge in freshwater science.
Alternative stable states and hydrological regime shifts in a large intermittent river
Abstract Non-perennial rivers and streams make up over half the global river network and are becoming more widespread. Transitions from perennial to non-perennial flow are a threshold-type change that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated drivers and feedbacks associated with regime shifts between wet and dry conditions in an intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence suggested that these regimes represent alternative stable states, including (a) significant jumps in discharge time series that were not accompanied by jumps in flow drivers such as precipitation and groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial aquifer were higher than the stream stage during wet regimes and lower than the streambed during dry regimes. Groundwater level variation, in turn, was driven by processes occurring at both the regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale (stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were associated with diverse pressures including network disconnection caused by upstream water use, increased flow stability potentially associated with reservoir operations, and anomalous wet and dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to non-perennial flow will be difficult to reverse.
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Sediment is one of the leading pollutants in rivers and streams across the United States (US) and the world. Between 1992 and 2012, concentrations of annual mean suspended sediment decreased at over half of the 137 stream sites assessed across the contiguous US. Increases occurred at less than 25 % of the sites, and the direction of change was uncertain at the remaining 25 %. Sediment trends were characterized using the Weighted Regressions on Time, Discharge, and Season (WRTDS) model, and decreases in sediment ranged from −95 % to −8.5 % of the 1992 concentration. To explore potential drivers of these changes, the sediment trends were (1) parsed into two broad contributors of change, changes in land management versus changes in the streamflow regime, and (2) grouped by land use of the watershed and correlated to concurrent changes in land use or land cover (land use/cover), hydrology and climate variables and static/long-term watershed characteristics. At 83 % of the sites, changes in land management (captured by changes in the concentration–streamflow relationship over time; C–Q relationship) contributed more to the change in the sediment trend than changes in the streamflow regime alone (i.e., any systematic change in the magnitude, frequency or timing of flows). However, at >50 % of the sites, changes in the streamflow regime contributed at least a 5 % change in sediment, and at 11 sites changes in the streamflow regime contributed over half the change in sediment, indicating that at many sites changes in streamflow were not the main driver of changes in sediment but were often an important supporting factor. Correlations between sediment trends and concurrent changes in land use/cover, hydrology and climate were often stronger at sites draining watersheds with more homogenous, human-related land uses (i.e., agricultural and urban lands) compared to mixed-use or undeveloped lands. At many sites, decreases in sediment occurred despite small-to-moderate increases in the amount of urban or agricultural land in the watershed, suggesting conservation efforts and best-management practices (BMPs) used to reduce sediment runoff to streams may be successful, up to a point, as lands are converted to urban and agricultural uses.
Widespread potential loss of streamflow into underlying aquifers across the USA
Most rivers exchange water with surrounding aquifers.sup.1,2. Where groundwater levels lie below nearby streams, streamwater can infiltrate through the streambed, reducing streamflow and recharging the aquifer.sup.3. These 'losing' streams have important implications for water availability, riparian ecosystems and environmental flows.sup.4-10, but the prevalence of losing streams remains poorly constrained by continent-wide in situ observations. Here we analyse water levels in 4.2 million wells across the contiguous USA and show that nearly two-thirds (64 per cent) of them lie below nearby stream surfaces, implying that these streamwaters will seep into the subsurface if it is sufficiently permeable. A lack of adequate permeability data prevents us from quantifying the magnitudes of these subsurface flows, but our analysis nonetheless demonstrates widespread potential for streamwater losses into underlying aquifers. These potentially losing rivers are more common in drier climates, flatter landscapes and regions with extensive groundwater pumping. Our results thus imply that climatic factors, geological conditions and historic groundwater pumping jointly contribute to the widespread risk of streams losing flow into surrounding aquifers instead of gaining flow from them. Recent modelling studies.sup.10 have suggested that losing streams could become common in future decades, but our direct observations show that many rivers across the USA are already potentially losing flow, highlighting the importance of coordinating groundwater and surface water policy.
Environmental flow limits to global groundwater pumping
Groundwater is the world's largest freshwater resource and is critically important for irrigation, and hence for global food security . Already, unsustainable groundwater pumping exceeds recharge from precipitation and rivers , leading to substantial drops in the levels of groundwater and losses of groundwater from its storage, especially in intensively irrigated regions . When groundwater levels drop, discharges from groundwater to streams decline, reverse in direction or even stop completely, thereby decreasing streamflow, with potentially devastating effects on aquatic ecosystems. Here we link declines in the levels of groundwater that result from groundwater pumping to decreases in streamflow globally, and estimate where and when environmentally critical streamflows-which are required to maintain healthy ecosystems-will no longer be sustained. We estimate that, by 2050, environmental flow limits will be reached for approximately 42 to 79 per cent of the watersheds in which there is groundwater pumping worldwide, and that this will generally occur before substantial losses in groundwater storage are experienced. Only a small decline in groundwater level is needed to affect streamflow, making our estimates uncertain for streams near a transition to reversed groundwater discharge. However, for many areas, groundwater pumping rates are high and environmental flow limits are known to be severely exceeded. Compared to surface-water use, the effects of groundwater pumping are markedly delayed. Our results thus reveal the current and future environmental legacy of groundwater use.
Seasonal growth potential of Oncorhynchus mykiss in streams with contrasting prey phenology and streamflow
The growth of any organism depends on habitat conditions, food availability, and their seasonal interactions. Yet in the vast literature on Pacific salmon (Oncorhynchus), the seasonal interaction between habitat conditions and food availability has received relatively little attention. We examined juvenile Oncorhynchus mykiss rearing, physical habitat, and resource phenologies in two Mediterranean coastal streams—one perennial, cool, and shaded and the other intermittent, seasonally warm, and sunny. We used a bioenergetic model to investigate the timing and magnitude of growth potential for drift‐foraging O. mykiss during the spring and summer in both systems. Growth potential peaked at least 2 months earlier in the intermittent stream than in the perennial stream. By early summer (June), growth potential had declined in the intermittent stream, whereas growth rates were peaking in the perennial stream. However, the mid‐July lipid content of juvenile O. mykiss in the intermittent stream was nearly twice that of fish in the perennial stream. By late summer (August), foraging profitability declined in both streams, as abiotic conditions in the intermittent stream approached lethal. In contrast, the perennial stream maintained suitable abiotic conditions even though the growth rate was low. We suggest that the divergent resource phenologies and seasonal mortality risks experienced by anadromous O. mykiss rearing in these streams could drive diversification of traits governing size, age, and timing of outmigration.
Jupiter's atmospheric jet streams extend thousands of kilometres deep
The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J , J , J and J indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J and J resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.
Pervasive changes in stream intermittency across the United States
Abstract Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use and physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of ‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future.
Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene
To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters . Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so) . Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today's grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance . Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss on millennial timescales will depend on bedrock topography and mantle viscosity-parameters that are difficult to measure and to incorporate into ice-sheet models.