Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27,214 result(s) for "Street signs"
Sort by:
An Efficient Text Detection Model for Street Signs
Text detection in natural scenes is a current research hotspot. The Efficient and Accurate Scene Text (EAST) detector model has fast detection speed and good performance but is ineffective in detecting long text regions owing to its small receptive field. In this study, we built upon the EAST model by improving the bounding box’s shrinking algorithm to make the model more accurate in predicting short edges of text regions; altering the loss function from balanced cross-entropy to Focal loss; improving the model’s learning ability on hard, positive examples; and adding a feature enhancement module (FEM) to increase the receptive field of the EAST model and enhance its detection ability for long text regions. The improved EAST model achieved better detection results on both the ICDAR2015 dataset and the Street Sign Text Detection (SSTD) dataset proposed in this paper. The precision and F1 scores of the model also demonstrated advantages over other models on the ICDAR2015 dataset. A comparison of the text detection effects between the improved EAST model and the EAST model showed that the proposed FEM was more effective in increasing the EAST detector’s receptive field, which indicates that it can improve the detection of long text regions.
An Improved Differentiable Binarization Network for Natural Scene Street Sign Text Detection
The street sign text information from natural scenes usually exists in a complex background environment and is affected by natural light and artificial light. However, most of the current text detection algorithms do not effectively reduce the influence of light and do not make full use of the relationship between high-level semantic information and contextual semantic information in the feature extraction network when extracting features from images, and they are ineffective at detecting text in complex backgrounds. To solve these problems, we first propose a multi-channel MSER (Maximally Stable Extreme Regions) method to fully consider color information in text detection, which separates the text area in the image from the complex background, effectively reducing the influence of the complex background and light on street sign text detection. We also propose an enhanced feature pyramid network text detection method, which includes a feature pyramid route enhancement (FPRE) module and a high-level feature enhancement (HLFE) module. The two modules can make full use of the network’s low-level and high-level semantic information to enhance the network’s effectiveness in localizing text information and detecting text with different shapes, sizes, and inclined text. Experiments showed that the F-scores obtained by the method proposed in this paper on ICDAR 2015 (International Conference on Document Analysis and Recognition 2015) dataset, ICDAR2017-MLT (International Conference on Document Analysis and Recognition 2017- Competition on Multi-lingual scene text detection) dataset, and the Natural Scene Street Signs (NSSS) dataset constructed in this study are 89.5%, 84.5%, and 73.3%, respectively, which confirmed the performance advantage of the method proposed in street sign text detection.
The language of the English street sign
This book opens readers' eyes to something they see all the time but take for granted: street signs. It is a portrait of the signs on modern English streets: what they look like, who and what they are for, how they link to English history and how they form part of life in multilingual England today.
A comparison of gateway in-street sign configuration to other driver prompts to increase yielding to pedestrians at crosswalks
Increasing motorists' yielding of the right of way to pedestrians in crosswalks reduces the number of collisions between motorists and pedestrians. In this study we examined a gateway in‐street sign configuration (1 in‐street sign installed between the 2 travel lanes in each direction, and 1 on both edges of the roadway in each direction) on multilane roads. The first experiment compared the efficacy of adding multiple in‐street signs used in a gateway configuration with a single sign between the 2 travel lanes in each direction. The second experiment compared the gateway in‐street sign configuration with a more expensive pedestrian hybrid beacon. The third experiment compared the gateway in‐street sign configuration with the more expensive rectangular rapid flashing beacon. The results demonstrated that the gateway in‐street sign configuration produced very high levels of driver yielding, and that it was as effective as the 2 more expensive treatments.
Street Sign Recognition Using Histogram of Oriented Gradients and Artificial Neural Networks
Street sign identification is an important problem in applications such as autonomous vehicle navigation and aids for individuals with vision impairments. It can be especially useful in instances where navigation techniques such as global positioning system (GPS) are not available. In this paper, we present a method of detection and interpretation of Malaysian street signs using image processing and machine learning techniques. First, we eliminate the background from an image to segment the region of interest (i.e., the street sign). Then, we extract the text from the segmented image and classify it. Finally, we present the identified text to the user as a voice notification. We also show through experimental results that the system performs well in real-time with a high level of accuracy. To this end, we use a database of Malaysian street sign images captured through an on-board camera.
Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles
Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance.
A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2
Traffic sign detection is an important task in traffic sign recognition systems. Chinese traffic signs have their unique features compared with traffic signs of other countries. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, we present a Chinese traffic sign detection algorithm based on a deep convolutional network. To achieve real-time Chinese traffic sign detection, we propose an end-to-end convolutional network inspired by YOLOv2. In view of the characteristics of traffic signs, we take the multiple 1 × 1 convolutional layers in intermediate layers of the network and decrease the convolutional layers in top layers to reduce the computational complexity. For effectively detecting small traffic signs, we divide the input images into dense grids to obtain finer feature maps. Moreover, we expand the Chinese traffic sign dataset (CTSD) and improve the marker information, which is available online. All experimental results evaluated according to our expanded CTSD and German Traffic Sign Detection Benchmark (GTSDB) indicate that the proposed method is the faster and more robust. The fastest detection speed achieved was 0.017 s per image.
Recent Advances in Traffic Sign Recognition: Approaches and Datasets
Autonomous vehicles have become a topic of interest in recent times due to the rapid advancement of automobile and computer vision technology. The ability of autonomous vehicles to drive safely and efficiently relies heavily on their ability to accurately recognize traffic signs. This makes traffic sign recognition a critical component of autonomous driving systems. To address this challenge, researchers have been exploring various approaches to traffic sign recognition, including machine learning and deep learning. Despite these efforts, the variability of traffic signs across different geographical regions, complex background scenes, and changes in illumination still poses significant challenges to the development of reliable traffic sign recognition systems. This paper provides a comprehensive overview of the latest advancements in the field of traffic sign recognition, covering various key areas, including preprocessing techniques, feature extraction methods, classification techniques, datasets, and performance evaluation. The paper also delves into the commonly used traffic sign recognition datasets and their associated challenges. Additionally, this paper sheds light on the limitations and future research prospects of traffic sign recognition.