Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,027 result(s) for "Streptococcal Infections - metabolism"
Sort by:
Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development
Streptococcus gallolyticus subsp. gallolyticus (Sg) has long been known to have a strong association with colorectal cancer (CRC). This knowledge has important clinical implications, and yet little is known about the role of Sg in the development of CRC. Here we demonstrate that Sg promotes human colon cancer cell proliferation in a manner that depends on cell context, bacterial growth phase and direct contact between bacteria and colon cancer cells. In addition, we observed increased level of β-catenin, c-Myc and PCNA in colon cancer cells following incubation with Sg. Knockdown or inhibition of β-catenin abolished the effect of Sg. Furthermore, mice administered with Sg had significantly more tumors, higher tumor burden and dysplasia grade, and increased cell proliferation and β-catenin staining in colonic crypts compared to mice receiving control bacteria. Finally, we showed that Sg is present in the majority of CRC patients and is preferentially associated with tumor compared to normal tissues obtained from CRC patients. These results taken together establish for the first time a tumor-promoting role of Sg that involves specific bacterial and host factors and have important clinical implications.
Streptococcus mutans, Candida albicans, and the Human Mouth: A Sticky Situation
  [...]unraveling the basis of dental plaque development will ultimately contribute to both oral and overall health. By manipulation of adhesion interactions, it may be possible to develop new protocols to block adhesive reactions, impeding development of biofilm-related oral disease such as dental caries [9], [22], [26]. [...]the presence of C. albicans in the oral environment can now be considered an additional factor that needs to be taken into account in evaluating risks to caries [18].
The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis
Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis.
Clinical Characteristics of Infections Caused by Streptococcus Anginosus Group
This study aimed to investigate the clinical characteristics, distribution of different strains and risk factors of patients infected with Streptococcus anginosus group (SAG). In the population of 463 patients, the male-to-female ratio was 1.95:1, and the patient age ranged from 6 months to 103 years. There were 49 children (10.58%), 311 young and middle-aged adults (67.17%), and 103 elderly adults (22.25%). Approximately 45.4% had underlying conditions, which were mostly malignant tumors and diabetes. Of the 463 specimens, 254 were S. anginosus (54.86%), 173 were S. constellatus (37.37%), and 36 were S. intermedius (7.77%). According to the age distribution, the incidence peaked in the 35–54 year age group. Different sites of infection had statistically significant differences regarding the constituent ratios of these three species. Different age groups also exhibited statistically significant differences in constituent ratios of the pathogenic organisms, as well as organ infections. In our population, 269 were clinically cured, 184 reported satisfactory improvement, and 10 died. SAG, as an opportunistic pathogen, can induce pyogenic infections in patients of all ages and shows no significant gender predilection in any age group. The three pathogenic organisms had differences with respect to patient age and infections of body sites.
Bacterial induction of Snail1 contributes to blood-brain barrier disruption
Bacterial meningitis is a serious infection of the CNS that results when blood-borne bacteria are able to cross the blood-brain barrier (BBB). Group B Streptococcus (GBS) is the leading cause of neonatal meningitis; however, the molecular mechanisms that regulate bacterial BBB disruption and penetration are not well understood. Here, we found that infection of human brain microvascular endothelial cells (hBMECs) with GBS and other meningeal pathogens results in the induction of host transcriptional repressor Snail1, which impedes expression of tight junction genes. Moreover, GBS infection also induced Snail1 expression in murine and zebrafish models. Tight junction components ZO-1, claudin 5, and occludin were decreased at both the transcript and protein levels in hBMECs following GBS infection, and this repression was dependent on Snail1 induction. Bacteria-independent Snail1 expression was sufficient to facilitate tight junction disruption, promoting BBB permeability to allow bacterial passage. GBS induction of Snail1 expression was dependent on the ERK1/2/MAPK signaling cascade and bacterial cell wall components. Finally, overexpression of a dominant-negative Snail1 homolog in zebrafish elevated transcription of tight junction protein-encoding genes and increased zebrafish survival in response to GBS challenge. Taken together, our data support a Snail1-dependent mechanism of BBB disruption and penetration by meningeal pathogens.
Transcriptomic analysis of equine placenta reveals key regulators and pathways involved in ascending placentitis
Improved understanding of the molecular mechanisms underlying ascending equine placentitis holds the potential for the development of new diagnostic tools and therapies to forestall placentitis-induced preterm labor. The current study characterized the equine placental transcriptome (chorioallantois [CA] and endometrium [EN]) during placentitis (placentitis group, n = 6) in comparison to gestationally-matched controls (control group, n = 6). Transcriptome analysis identified 2953 and 805 differentially expressed genes in CA and EN during placentitis, respectively. Upstream regulator analysis revealed the central role of toll-like receptors (TLRs) in triggering the inflammatory signaling, and consequent immune-cell chemotaxis. Placentitis was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, and MMP9) and apoptosis-related genes such as caspases (CASP3, CASP4, and CASP7) in CA. Also, placentitis was associated with downregulation of transcripts coding for proteins essential for placental steroidogenesis (SRD5A1 and AKR1C1), progestin signaling (PGRMC1 and PXR) angiogenesis (VEGFA, VEGFR2, and VEGFR3), and nutrient transport (GLUT12 and SLC1A4), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could explain placental insufficiency during placentitis. Placentitis was also associated with aberrant expression of several placenta-regulatory genes, such as PLAC8, PAPPA, LGALS1, ABCG2, GCM1, and TEPP, which could negatively affect placental functions. In conclusion, our findings revealed for the first time the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during equine placentitis, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways. Summary sentence This is the first study to characterize the equine placenta transcriptome to identify the key regulators and pathways underlying placental inflammation, separation, and insufficiency during the equine ascending placentitis. Graphical Abstract
Dual actions of group B Streptococcus capsular sialic acid provide resistance to platelet-mediated antimicrobial killing
Circulating platelets have important functions in thrombosis and in modulating immune and inflammatory responses. However, the role of platelets in innate immunity to bacterial infection is largely unexplored. While human platelets rapidly kill Staphylococcus aureus, we found the neonatal pathogen group B Streptococcus (GBS) to be remarkably resistant to platelet killing. GBS possesses a capsule polysaccharide (CPS)with terminal α2,3-linked sialic acid (Sia) residues that mimic a common epitope present on the human cell surface glycocalyx. A GBS mutant deficient in CPS Sia was more efficiently killed by human platelets, thrombin-activated platelet releasate, and synthetic platelet-associated antimicrobial peptides. GBS Sia is known to bind inhibitory Sia-recognizing Ig superfamily lectins (Siglecs) to block neutrophil and macrophage activation. We show that human platelets also express high levels of inhibitory Siglec-9 on their surface, and that GBS can engage this receptor in a Sia-dependent manner to suppress platelet activation. In a mouse i.v. infection model, antibody-mediated platelet depletion increased susceptibility to platelet-sensitive S. aureus but did not alter susceptibility to platelet-resistant GBS. Elimination of murine inhibitory Siglec-E partially reversed platelet suppression in response to GBS infection. We conclude that GBS Sia has dual roles in counteracting platelet antimicrobial immunity: conferring intrinsic resistance to platelet-derived antimicrobial components and inhibiting platelet activation through engagement of inhibitory Siglecs. We report a bacterial virulence factor for evasion of platelet-mediated innate immunity.
Reprogramming aerobic metabolism mitigates Streptococcus pyogenes tissue damage in a mouse necrotizing skin infection model
Disease tolerance is a host response to infection that limits collateral damage to host tissues while having a neutral effect on pathogen fitness. Previously, we found that the pathogenic lactic acid bacterium Streptococcus pyogenes manipulates disease tolerance using its aerobic mixed-acid fermentation pathway via the enzyme pyruvate dehydrogenase, but the microbe-derived molecules that mediate communication with the host’s disease tolerance pathways remain elusive. Here we show in a murine model that aerobic mixed-acid fermentation inhibits the accumulation of inflammatory cells including neutrophils and macrophages, reduces the immunosuppressive cytokine interleukin-10, and delays bacterial clearance and wound healing. In infected macrophages, the aerobic mixed-acid fermentation end-products acetate and formate from streptococcal upregulate host acetyl-CoA metabolism and reduce interleukin-10 expression. Inhibiting aerobic mixed-acid fermentation using a bacterial-specific pyruvate dehydrogenase inhibitor reduces tissue damage during murine infection, correlating with increased interleukin-10 expression. Our results thus suggest that reprogramming carbon flow provides a therapeutic strategy to mitigate tissue damage during infection. Disease tolerance helps avoid inflammatory damages when immune system is trying to clear infection, but the mechanisms are still unclear. Here the authors show that the bacteria tap into disease tolerance by altering host cell acetyl-CoA metabolism to suppress innate cell function and cytokine production.
Activation of TLR2 by a Small Molecule Produced by Staphylococcus epidermidis Increases Antimicrobial Defense against Bacterial Skin Infections
Production of antimicrobial peptides by epithelia is an essential defense against infectious pathogens. In this study we evaluated whether the commensal microorganism Staphylococcus epidermidis may enhance production of antimicrobial peptides by keratinocytes and thus augment skin defense against infection. Exposure of cultured undifferentiated human keratinocytes to a sterile nontoxic small molecule of <10kDa from S. epidermidis conditioned culture medium (SECM), but not similar preparations from other bacteria, enhanced human β-defensin 2 (hBD2) and hBD3 mRNA expression and increased the capacity of cell lysates to inhibit the growth of group A Streptococcus (GAS) and S. aureus. Partial gene silencing of hBD3 inhibited this antimicrobial action. This effect was relevant in vivo as administration of SECM to mice decreased susceptibility to infection by GAS. Toll-like receptor 2 (TLR2) was important to this process as a TLR2-neutralizing antibody blocked induction of hBDs 2 and 3, and Tlr2-deficient mice did not show induction of mBD4. Taken together, these findings reveal a potential use for normal commensal bacterium S. epidermidis to activate TLR2 signaling and induce antimicrobial peptide expression, thus enabling the skin to mount an enhanced response to pathogens.
Potential involvement of Streptococcus mutans possessing collagen binding protein Cnm in infective endocarditis
Streptococcus mutans , a significant contributor to dental caries, is occasionally isolated from the blood of patients with infective endocarditis. We previously showed that S. mutans strains expressing collagen-binding protein (Cnm) are present in the oral cavity of approximately 10–20% of humans and that they can effectively invade human umbilical vein endothelial cells (HUVECs). Here, we investigated the potential molecular mechanisms of HUVEC invasion by Cnm-positive S. mutans . The ability of Cnm-positive S. mutans to invade HUVECs was significantly increased by the presence of serum, purified type IV collagen, and fibrinogen ( p  < 0.001). Microarray analyses of HUVECs infected by Cnm-positive or -negative S. mutans strains identified several transcripts that were differentially upregulated during invasion, including those encoding the small G protein regulatory proteins ARHGEF38 and ARHGAP9 . Upregulation of these proteins occurred during invasion only in the presence of serum. Knockdown of ARHGEF38 strongly reduced HUVEC invasion by Cnm-positive S. mutans . In a rat model of infective endocarditis, cardiac endothelial cell damage was more prominent following infection with a Cnm-positive strain compared with a Cnm-negative strain. These results suggest that the type IV collagen–Cnm– ARHGEF38 pathway may play a crucial role in the pathogenesis of infective endocarditis.