Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Streptococcus equinus"
Sort by:
Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment
Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC.We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ.Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and investigation of the unclear association of dairy and clinical Sii with human diseases. The genome of the African dairy isolate Sii CJ18 clearly differs from the human isolate ATCC BAA-102T. CJ18 possesses a high natural competence predisposition likely explaining the enlarged genome. Metabolic adaptations to the dairy environment are evident and especially lactose uptake corresponds to S. thermophilus. Genome decay is not as advanced as in S. thermophilus (10-19%) possibly due to a shorter history in dairy fermentations.
Direct On-Chip Diagnostics of Streptococcus bovis/Streptococcus equinus Complex in Bovine Mastitis Using Bioinformatics-Driven Portable qPCR
This study introduces an innovative on-site diagnostic method for rapidly detecting the Streptococcus bovis/Streptococcus equinus complex (SBSEC), crucial for livestock health and food safety. Through a comprehensive genomic analysis of 206 genomes, this study identified genetic markers that improved classification and addressed misclassifications, particularly in genomes labeled S. equinus and S. lutetiensis. These markers were integrated into a portable quantitative polymerase chain reaction (qPCR) that can detect SBSEC species with high sensitivity (down to 101 or 100 colony-forming units/mL). The portable system featuring a flat chip and compact equipment allows immediate diagnosis within 30 min. The diagnostic method was validated in field conditions directly from cattle udders, farm environments, and dairy products. Among the 100 samples, 51 tested positive for bacteria associated with mastitis. The performance of this portable qPCR was comparable to laboratory methods, offering a reliable alternative to whole-genome sequencing for early detection in clinical, agricultural, and environmental settings.
In vitro thrombolytic activity of purified streptokinase extracted from Streptococcus equinus VIT_VB2 isolated from bovine milk
Streptokinase (SK) is an extracellular enzyme secreted by various strains of β-hemolytic Streptococci. The main focus of the current study is to evaluate the in vitro thrombolytic activity of purified SK extracted from Streptococcus equinus VIT_VB2 (Accession no. JX406835) isolated from milk sample. The growth rate of S. equinus VIT_VB2 strain was studied with pH and biomass content which has positive significant effect on enzyme yield. A temperature of 10 °C and pH of 6 was found to be optimum for maximum SK activity. The specific activity of the purified SK produced by VIT_VB2 strain was found to be 6,585 IU mg −1 . The molecular mass of the enzyme was determined as 47 kDa by SDS-PAGE. In vitro thrombolytic activity of purified SK was determined using synthetic chromogenic substrate S-2251, the activity of the purified enzyme was found to be 6,330 ± 2.2 IU. The purity of SK was compared with standard SK by HPLC. This is the first report which reveals the SK activity of S. equinus isolated from milk sample.
Association of the Streptococcus bovis/Streptococcus equinus Complex With Colorectal Neoplasia: A Systematic Review and Meta-analysis
Invasive infection with complex (SBSEC) bacteria is associated with underlying colorectal neoplasia. However, the link between intestinal or fecal colonization with SBSEC isolates or antibody responses to SBSEC members and colorectal cancer is not thoroughly investigated in the literature. We searched the PubMed, EMBASE, and Web of Science databases for case-control studies as well as retrospective or prospective cohort studies reporting an association between SBSEC bacteria and colorectal neoplasia. We identified 22 studies (15 case-control and 7 cohort) that met our inclusion criteria. Among the cohort studies, patients with SBSEC bacteremia were 3.73 times more likely to have underlying colorectal cancer compared with individuals with no bacteremia (relative risk [RR], 3.73; 95% CI, 2.79-5.01), whereas the risk of underlying colorectal adenoma in patients with SBSEC bacteremia was not significantly increased (RR, 5.00; 95% CI, 0.83-30.03). In case-control studies, patients with colorectal cancer were 2.27 times more likely to have evidence of intestinal or fecal colonization with SBSEC isolates (odds ratio [OR], 2.27; 95% CI, 1.11-4.62) and immunoglobulin G (IgG) antibody responses to SBSEC antigens (OR, 2.27; 95% CI, 1.06-4.86) compared with controls. Patients with colorectal adenoma were not more likely to be colonized with SBSEC isolates compared with controls (OR, 1.12; 95% CI, 0.55-2.25). Apart from the well-established association of SBSEC bacteremia and underlying colorectal cancer, intestinal or fecal colonization with SBSEC isolates and IgG antibody responses to SBSEC antigens were higher in patients with colorectal cancer compared with controls. Neither bacteremia from SBSEC isolates nor colonization with SBSEC bacteria was associated with underlying colorectal adenoma.
Enhancing bovicin HC5 production in Streptococcus equinus HC5 through adaptive laboratory evolution under thermal stress
Bovicin HC5, a bacteriocin produced by Streptococcus equinus HC5, demonstrates inhibitory activity against pathogenic and spoilage microorganisms. However, low production yields hinder its widespread application. This study investigated the impact of temperature on S . equinus HC5 growth and employed adaptive laboratory evolution (ALE) under heat stress to obtain variants with improved bovicin HC5 production. The optimal growth temperature for the wild-type strain was determined to be 42 °C, with growth ceasing above 49 °C. Following 400 generations of ALE at 47 °C and 48 °C, eight variants were selected. Two of these variants exhibited significantly enhanced bovicin HC5 production, reaching up to a 140% increase ( P  < 0.05). The variant with the highest bacteriocin yield showed increased expression of bvcA , the gene encoding the bovicin HC5 precursor peptide. This high-producing variant also displayed enhanced thermal resistance, a higher growth rate (μ = 1.33 ± 0.02 h −1 ), and increased biomass accumulation (OD 600nm  = 4.03 ± 0.06) at 48 °C compared to the wild-type strain (μ = 0.98 ± 0.04 h −1 ; OD 600nm  = 1.96 ± 0.12) ( P  < 0.05). Furthermore, the selected variants exhibited alterations in membrane composition, characterized by an increased concentration of saturated fatty acids and a reduced Zeta potential ( P  < 0.05). Genomic analysis of these variants identified mutations in genes involved in protein modification, transcriptional regulation, and cellular transport, including a lantibiotic permease. These results demonstrate the effectiveness of ALE for generating S . equinus HC5 variants with improved bovicin HC5 production and provide valuable insights for optimizing bacteriocin biosynthesis strategies. Key points • The optimal growth temperature for the Streptococcus equinus HC5 strain was determined to be 42 °C, with growth ceasing above 49 °C • The variant Streptococcus equinus HC5 40048 with the highest bacteriocin yield showed increased expression of bvcA, the gene encoding the bovicin HC5 precursor peptide • ALE is an efficient metabolic engineering strategy to increase bacteriocin production in Streptococcus equinus HC5 Graphical Abstract
Streptococcus ruminicola sp. nov., new species of the Streptococcus bovis/Streptococcus equinus complex (SBSEC) isolated from the rumen of Korean domestic ruminants
A total of three Gram-positive, and oxidase and catalase-negative facultative anaerobic non-motile bacteria were isolated from the rumen fluid of cows and goats and these strains were designated CNU_G2T, CNU_77-61, and CNU_G3. They grew at 20–45 °C, pH 6.5–7, and 0–6.5% NaCl (w/v). The G + C contents (%) of the three isolates were 37.9, 37.8 and 37.8, respectively. Phylogenomic analysis indicated that these strains were distinct from other Streptococcus species. The average nucleotide identity between the isolates and the closest strain S. infantarius subsp. infantarius ATCC BAA-102T was 94.0–94.5%, while the digital DNA–DNA hybridization (dDDH) values between the isolates and the aforementioned related strain were 58.2–61.4%, respectively. Fatty acid analysis revealed higher proportions of C16:0 (> 28%) in all three isolates, while the proportion of C18:0 was higher in CNU_G2T (25.8%); however, it was less than 12% in all the representing strains used in the study. The C14:0 composition of strains CNU_77-61 (22.1%) and CNU_G3 (24.1%) was higher than that of type strains of CNU_G2T (8.1%). Based on the morphological, biochemical, and molecular phylogenetic features of the three novel isolates, they represent a novel species of the genus Streptococcus, for which we propose as Streptococcus ruminicola sp. nov. The type strain is CNU_G2T (= KCTC 43308T = GDMCC 1.2785T).
Therapeutic Role of Secondary Metabolites from Probiotic Strains for Ehrlich Solid Tumors in Mice
This study aimed to screen the bioactive components in Streptococcus equinus WC1 (SE-WC1) and Limosilactobacillus reuteri GM4 (LR-GM4) and estimate the therapeutic role in Ehrlich solid tumors (EST) mice model. Forty-four male albino EST mice were assigned into 7 groups and treated daily for 2 weeks, including the EST group, the EST mice that received SE-WC1 at a low or a high dose (0.5 ml *106 or 0.5 ml *108 cfu), the EST mice that received LR-GM4 at the low or the high dose (0.5 ml *106 or 0.5 ml *108 cfu), and the EST mice that received SE-WC1 plus LR-GM4 at the low or the high dose. Tumors were harvested, weighed, examined, and used for the determination of apoptosis-related gene expression. Samples of the intestine, liver, and kidney were gathered for histological examination. The GC–MS identified 24 and 36 bioactive compounds in SE-WC1 and LR-GM4, respectively. The main compound in SE-WC1 was lupeol; however, the main compound in LR-GM4 was retinaldehyde. EST mice showed disturbances in Bcl-2, Bax, and p53 mRNA expression along with histological changes in the intestine, liver, and kidney. Administration of both bacterial strains reduced the tumor weight, alleviated the disturbances in the gene expression, and improved the histological structure of the intestine, liver, and kidney in a dose-dependent. Moreover, LR-GM4 was more effective than SE-WC1 due to its higher content of bioactive compounds. It could be concluded that these strains of probiotics are promising for the treatment of solid tumors.
Development of Electrochemical DNA Biosensor for Equine Hindgut Acidosis Detection
The pH drop in the hindgut of the horse is caused by lactic acid-producing bacteria which are abundant when a horse’s feeding regime is excessively carbohydrate rich. This drop in pH below six causes hindgut acidosis and may lead to laminitis. Lactic acid-producing bacteria Streptococcus equinus and Mitsuokella jalaludinii have been found to produce high amounts of L-lactate and D-lactate, respectively. Early detection of increased levels of these bacteria could allow the horse owner to tailor the horse’s diet to avoid hindgut acidosis and subsequent laminitis. Therefore, 16s ribosomal ribonucleic acid (rRNA) sequences were identified and modified to obtain target single stranded deoxyribonucleic acid (DNA) from these bacteria. Complementary single stranded DNAs were designed from the modified target sequences to form capture probes. Binding between capture probe and target single stranded deoxyribonucleic acid (ssDNA) in solution has been studied by gel electrophoresis. Among pairs of different capture probes and target single stranded DNA, hybridization of Streptococcus equinus capture probe 1 (SECP1) and Streptococcus equinus target 1 (SET1) was portrayed as gel electrophoresis. Adsorptive stripping voltammetry was utilized to study the binding of thiol modified SECP1 over gold on glass substrates and these studies showed a consistent binding signal of thiol modified SECP1 and their hybridization with SET1 over the gold working electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to examine the binding of thiol modified SECP1 on the gold working electrode and hybridization of thiol modified SECP1 with the target single stranded DNA. Both demonstrated the gold working electrode surface was modified with a capture probe layer and hybridization of the thiol bound ssDNA probe with target DNA was indicated. Therefore, the proposed electrochemical biosensor has the potential to be used for the detection of the non-synthetic bacterial DNA target responsible for equine hindgut acidosis.
ISOLATION OF STREPTOCOCCI FROM A FATAL CASE OF MYOCARDITIS IN A CAPTIVE BROWN BEAR (URSUS ARCTOS)
A 10-yr-old, male brown bear (Ursus arctos) from Bursa Zoo in Turkey died without any apparent signs. Severe purulent pericarditis and myocarditis with mild ascites, lung edema, and moderate liver congestion were observed during necropsy. Microscopically, there were severe neutrophilic infiltrations in the myocardium and thoracic lymph nodes. A member of the Streptococcus bovis-Streptococcus equinus complex (SBSEC) was isolated and identified phenotypically.
Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex
Background Within the genus Streptococcus , only Streptococcus thermophilus is used as a starter culture in food fermentations. Streptococcus macedonicus though, which belongs to the Streptococcus bovis / Streptococcus equinus complex (SBSEC), is also frequently isolated from fermented foods mainly of dairy origin. Members of the SBSEC have been implicated in human endocarditis and colon cancer. Here we compare the genome sequence of the dairy isolate S. macedonicus ACA-DC 198 to the other SBSEC genomes in order to assess in silico its potential adaptation to milk and its pathogenicity status. Results Despite the fact that the SBSEC species were found tightly related based on whole genome phylogeny of streptococci, two distinct patterns of evolution were identified among them. Streptococcus macedonicus, Streptococcus infantarius CJ18 and Streptococcus pasteurianus ATCC 43144 seem to have undergone reductive evolution resulting in significantly diminished genome sizes and increased percentages of potential pseudogenes when compared to Streptococcus gallolyticus subsp. gallolyticus . In addition, the three species seem to have lost genes for catabolizing complex plant carbohydrates and for detoxifying toxic substances previously linked to the ability of S. gallolyticus to survive in the rumen. Analysis of the S. macedonicus genome revealed features that could support adaptation to milk, including an extra gene cluster for lactose and galactose metabolism, a proteolytic system for casein hydrolysis, auxotrophy for several vitamins, an increased ability to resist bacteriophages and horizontal gene transfer events with the dairy Lactococcus lactis and S. thermophilus as potential donors. In addition, S. macedonicus lacks several pathogenicity-related genes found in S. gallolyticus . For example, S. macedonicus has retained only one (i.e. the pil3 ) of the three pilus gene clusters which may mediate the binding of S. gallolyticus to the extracellular matrix. Unexpectedly, similar findings were obtained not only for the dairy S. infantarius CJ18, but also for the blood isolate S. pasteurianus ATCC 43144. Conclusions Our whole genome analyses suggest traits of adaptation of S. macedonicus to the nutrient-rich dairy environment. During this process the bacterium gained genes presumably important for this new ecological niche. Finally, S. macedonicus carries a reduced number of putative SBSEC virulence factors, which suggests a diminished pathogenic potential.