Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
89 result(s) for "Streptomyces rimosus"
Sort by:
Initial pH determines the morphological characteristics and secondary metabolite production in Aspergillus terreus and Streptomyces rimosus cocultures
The influence of the initial pH on the morphology and secondary metabolite production in cocultures and axenic cultures of Aspergillus terreus and Streptomyces rimosus was investigated. The detected secondary metabolites (6 of bacterial and 4 of fungal origin) were not found in the cultures initiated at pH values less than or equal to 4.0. The highest mean levels of oxytetracycline were recorded in S. rimosus axenic culture at pH 5.0. Initiating the axenic culture at pH 5.9 led to visibly lower product levels, yet the presence of A. terreus reduced the negative effect of non-optimal pH and led to higher oxytetracycline titer than in the corresponding S. rimosus axenic culture. The cocultivation initiated at pH 5.0 or 5.9 triggered the formation of oxidized rimocidin. The products of A. terreus were absent in the cocultures. At pH 4.0, the striking morphological differences between the coculture and the axenic cultures were recorded.
Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host
High-yielding industrial Streptomyces producer is usually obtained by multiple rounds of random mutagenesis and screening. These strains have great potential to be developed as the versatile chassis for the discovery and titer improvement of desired heterologous products. Here, the industrial strain Streptomyces rimosus 461, which is a high producer of oxytetracycline, has been engineered as a robust host for heterologous expression of chlortetracycline (CTC) biosynthetic gene cluster. First, the industrial chassis strain SR0 was constructed by deleting the whole oxytetracycline gene cluster of S. rimosus 461. Then, the biosynthetic gene cluster ctc of Streptomyces aureofaciens ATCC 10762 was integrated into the chromosome of SR0. With an additional constitutively expressed cluster-situated activator gene ctcB , the CTC titer of the engineering strain SRC1 immediately reached 1.51 g/L in shaking flask. Then, the CTC titers were upgraded to 2.15 and 3.27 g/L, respectively, in the engineering strains SRC2 and SRC3 with the enhanced ctcB expression. Further, two cluster-situated resistance genes were co-overexpressed with ctcB . The resultant strain produced CTC up to 3.80 g/L in shaking flask fermentation, which represents 38 times increase in comparison with that of the original producer. Overall, SR0 presented in this study have great potential to be used for heterologous production of tetracyclines and other type II polyketides.
Morphological-metabolic analysis in Streptomyces rimosus microparticle-enhanced cultivations (MPEC)
Streptomyces produce a broad spectrum of biologically active molecules such as oxytetracycline and rimocidin, which are widely used in human and animal treatments. microparticle-enhanced cultivation (MPEC) is one of the tools used for Streptomyces bioprocesses intensification by the control of mycelial morphology. In the present work, morphological changes of Streptomyces rimosus caused by the addition of 10 µm talc microparticles in MPEC were correlated with the biosynthetic activity of the microorganism. Comparing the runs with and without microparticles, major morphological changes were observed in MPEC, including the deformation of pellets, variation of their size, appearance of hyphae and clumps as well as the aggregation of mycelial objects. The presence of talc microparticles also influenced the levels of the studied secondary metabolites produced by S. rimosus. Comparing control and MPEC runs, the addition of talc microparticles increased the amounts of oxytetracycline (9-fold), 2-acetyl-2-decarboxamido-oxytetracycline (7-fold), milbemycin A3+4[O] (3-fold) and CE 108 (1.5-fold), while rimocidin (27-ethyl) and milbemycin β11+4[O] production was reduced. In summary, the addition of talc microparticles to S. rimosus cultivations led to the development of smaller morphological forms like hyphae and clumps as well as to the changes in the amounts of secondary metabolites.
Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527
The polyene macrolide rimocidin, produced by Streptomyces rimosus M527, is highly effective against a broad range of fungal plant pathogens, but at low yields. Elicitation is an effective method of stimulating the yield of bioactive secondary metabolites. In this study, the biomass and filtrate of a culture broth of Escherichia coli JM109, Bacillus subtilis WB600, Saccharomyces cerevisiae, and Fusarium oxysporum f. sp. cucumerinum were employed as elicitors to promote rimocidin production in S. rimosus M527. Adding culture broth and biomass of S. cerevisiae (A3) and F. oxysporum f. sp. cucumerinum (B4) resulted in an increase of rimocidin production by 51.2% and 68.3% respectively compared with the production under normal conditions in 5-l fermentor. In addition, quantitative RT-PCR analysis revealed that the transcriptions of ten genes (rimA to rimK) located in the gene cluster involved in rimocidin biosynthesis in A3 or B4 elicitation experimental group were all higher than those of a control group. Using a β-glucuronidase (GUS) reporter system, GUS enzyme activity assay, and Western blot analysis, we discovered that elicitation of A3 or B4 increased protein synthesis in S. rimosus M527. These results demonstrate that the addition of elicitors is a useful approach to improve rimocidin production.Key Points• An effective strategy for enhancing rimocidin production in S. rimosus M527 is demonstrated.• Overproduction of rimocidin is a result of higher expressed structural genes followed by an increase in protein synthesis.
Changing the Inoculum Type From Preculture to Spore Suspension Markedly Alters the Production of Secondary Metabolites in Filamentous Microbial Coculture
The shake flask cocultures of Aspergillus terreus and Streptomyces rimosus were investigated with regard to the production of mevinolinic acid (lovastatin), oxytetracycline, and other secondary metabolites (SMs). The aim of the study was to determine the effect of inoculum type (spore suspension or preculture) on the levels of SMs in the fermentation broth. Altogether, 17 SMs were detected, including 4 products with confirmed identities, 10 putatively annotated metabolites, and 3 unknown molecules. As observed over the course of qualitative and quantitative analyses, the selection of inoculum type markedly influenced the SM-related outcomes of cocultures. Depending on the coculture initiation procedure, replacing the preculture with spore inoculum positively affected the biosynthesis of oxytetracycline, butyrolactone I, (+)-geodin, as well as the molecules putatively identified as rimocidin, CE-108, and (+)-erdin. It was concluded that the comparative analyses of SM production in filamentous microbial cocultures and monocultures are dependent on the type of inoculum and thus the diversification of inocula is highly recommended in such studies. Furthermore, it was demonstrated that designing a coculture experiment that involves only a single type of inoculum may lead to the underestimation of biosynthetic repertoires of filamentous microorganisms.
Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus
There is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20–60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Streptomyces rimosus-rich soil exposure alleviates depression-like behaviors by modulating neuroinflammation and synaptic plasticity in mice with stress
Soil contains a wide range of microbial communities. Recently, direct exposure to soil and soil microbes has been reported to have a positive effect on emotional integrity. Among the soil microbes, Streptomyces rimosus is known to produce geosmin, which have a unique odor and positive effects on mental status. In this context, this study aimed to investigate the effects of direct exposure to soil containing S. rimosus on depression-like behavior and depression-related factors in the mouse. To induce depression, the mice were exposed to chronic restraint stress (CRS) for 14 days, and direct soil exposure continued for 17 days from the first day of CRS. The results showed that direct exposure to soil containing S. rimosus alleviated the CRS-induced depression-like behavior. Additionally, S. rimosus -rich soil exposure reduced the activation of microglia and astrocyte in the depression-related brain area, and reduced the mRNA expression levels of cytokines including interleukin (IL)-6, interferon-γ, and IL-17 A. Moreover, S. rimosus -rich soil contact increased synaptic plasticity, which was reduced by CRS. The same effects were not observed in the group exposed to sterilized soil. Collectively, the current study suggests that S. rimosus soil contact can be a beneficial psychological therapeutic strategy for patients with mental illnesses.
Production of extracellular heterologous proteins in Streptomyces rimosus, producer of the antibiotic oxytetracycline
Among the Streptomyces species, Streptomyces lividans has often been used for the production of heterologous proteins as it can secrete target proteins directly into the culture medium. Streptomyces rimosus, on the other hand, has for long been used at an industrial scale for oxytetracycline production, and it holds ‘Generally Recognised As Safe’ status. There are a number of properties of S. rimosus that make this industrial strain an attractive candidate as a host for heterologous protein production, including (1) rapid growth rate; (2) growth as short fragments, as for Escherichia coli; (3) high efficiency of transformation by electroporation; and (4) secretion of proteins into the culture medium. In this study, we specifically focused our efforts on an exploration of the use of the Sec secretory pathway to export heterologous proteins in a S. rimosus host. We aimed to develop a genetic tool kit for S. rimosus and to evaluate the extracellular production of target heterologous proteins of this industrial host. This study demonstrates that S. rimosus can produce the industrially important enzyme phytase AppA extracellularly, and analogous to E. coli as a host, application of His-Tag/Ni-affinity chromatography provides a simple and rapid approach to purify active phytase AppA in S. rimosus. We thus demonstrate that S. rimosus can be used as a potential alternative protein expression system.
Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus
Background Oxytetracycline (OTC) is a broad-spectrum antibiotic commercially produced by Streptomyces rimosus . Despite its importance, little is known about the regulation of OTC biosynthesis, which hampered any effort to improve OTC production via engineering regulatory genes. Results A gene encoding a Streptomyces antibiotic regulatory protein (SARP) was discovered immediately adjacent to the otrB gene of oxy cluster in S. rimosus and designated otcR . Deletion and complementation of otcR abolished or restored OTC production, respectively, indicating that otcR encodes an essential activator of OTC biosynthesis. Then, the predicted consensus SARP-binding sequences were extracted from the promoter regions of oxy cluster. Transcriptional analysis in a heterologous GFP reporter system demonstrated that OtcR directly activated the transcription of five oxy promoters in E. coli , further mutational analysis of a SARP-binding sequence of oxyI promoter proved that OtcR directly interacted with the consensus repeats. Therefore, otcR was chosen as an engineering target, OTC production was significantly increased by overexpression of otcR as tandem copies each under the control of strong SF14 promoter. Conclusions A SARP activator, OtcR, was identified in oxy cluster of S. rimosus ; it was shown to directly activate five promoters from oxy cluster. Overexpression of otcR at an appropriate level dramatically increased OTC production by 6.49 times compared to the parental strain, thus demonstrating the great potential of manipulating OtcR to improve the yield of OTC production.
Improvement of Rimocidin Biosynthesis by Increasing Supply of Precursor Malonyl-CoA via Over-expression of Acetyl-CoA Carboxylase in Streptomyces rimosus M527
Precursor engineering is an effective strategy for the overproduction of secondary metabolites. The polyene macrolide rimocidin, which is produced by Streptomyces rimosus M527, exhibits a potent activity against a broad range of phytopathogenic fungi. It has been predicted that malonyl-CoA is used as extender units for rimocidin biosynthesis. Based on a systematic analysis of three sets of time-series transcriptome microarray data of S. rimosus M527 fermented in different conditions, the differentially expressed accsr gene that encodes acetyl-CoA carboxylase (ACC) was found. To understand how the formation of rimocidin is being influenced by the expression of the accsr gene and by the concentration of malonyl-CoA, the accsr gene was cloned and over-expressed in the wild-type strain S. rimosus M527 in this study. The recombinant strain S. rimosus M527-ACC harboring the over-expressed accsr gene exhibited better performances based on the enzymatic activity of ACC, intracellular malonyl-CoA concentrations, and rimocidin production compared to S. rimosus M527 throughout the fermentation process. The enzymatic activity of ACC and intracellular concentration of malonyl-CoA of S. rimosus M527-ACC were 1.0- and 1.5-fold higher than those of S. rimosus M527, respectively. Finally, the yield of rimocidin produced by S. rimosus M527-ACC reached 320.7 mg/L, which was 34.0% higher than that of S. rimosus M527. These results confirmed that malonyl-CoA is an important precursor for rimocidin biosynthesis and suggested that an adequate supply of malonyl-CoA caused by accsr gene over-expression led to the improvement in rimocidin production.