Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,033 result(s) for "Stretchability"
Sort by:
Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications
Recently, flexible electrodes with biaxial/omnidirectional stretchability haveattracted significant attention. However, most existing pliable electrode materialscan be only stretched in one direction. In this work, an unexpected isotropic vander Waals (vdW) heterostructure is proposed, based on the assembly of two-dimensional crystals of anisotropic black phosphorene (BP) and transition metalcarbide (TIC2). Using vdW-corrected density functional theory calculations, theBPFFiC2 vdW heterostructure was predicted to have excellent structural andmechanical stability, superior electrical conductivity, omnidirectional flexibility,and a high Li storage capacity. We have unraveled the physical origin of theexcellent stability, as well as the Li adsorption preferences of the lithiatedheterostructure, based on a three-step analysis of the stability of the Li-adsorptionprocesses. In addition, the BP/TiC2 vdW heterostructure can also be applied asthe anode material for flexible Na-ion batteries because of its high Na storagecapacity and strong Na binding. However, compared with Na adsorption, thecapacity is higher, and the adsorption energy is more negative for Li adsorption.Our findings provide valuable insights into the exploration of a rich variety ofvdW heterostructures for next-generation flexible energy storage devices.
High-brightness all-polymer stretchable LED with charge-trapping dilution
Next-generation light-emitting displays on skin should be soft, stretchable and bright 1 – 7 . Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites 6 – 11 . They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance 12 , 13 . However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays. A material design strategy and fabrication process is described to produce all-polymer light-emitting diodes with high brightness, current efficiency and good mechanical stability, with applications in skin electronics and human–machine interfaces.
Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network
Stretchable ionic skins are intriguing in mimicking the versatile sensations of natural skins. However, for their applications in advanced electronics, good elastic recovery, self-healing, and more importantly, skin-like nonlinear mechanoresponse (strain-stiffening) are essential but can be rarely met in one material. Here we demonstrate a robust proton-conductive ionic skin design via introducing an entropy-driven supramolecular zwitterionic reorganizable network to the hydrogen-bonded polycarboxylic acid network. The design allows two dynamic networks with distinct interacting strength to sequentially debond with stretch, and the conflict among elasticity, self-healing, and strain-stiffening can be thus defeated. The representative polyacrylic acid/betaine elastomer exhibits high stretchability (1600% elongation), immense strain-stiffening (24-fold modulus enhancement), ~100% self-healing, excellent elasticity (97.9 ± 1.1% recovery ratio, <14% hysteresis), high transparency (99.7 ± 0.1%), moisture-preserving, anti-freezing (elastic at −40 °C), water reprocessibility, as well as easy-to-peel adhesion. The combined advantages make the present ionic elastomer very promising in wearable iontronic sensors for human-machine interfacing. Ionic skins are of interest for a range of electronic, sensing and interfacing applications but often have trade-offs in properties. Here, the authors report on the creation of a dual network ionic skin using a supramolecular zwitterionic competing network to produce a strain-stiffening, self-healing adhesive sensor.
3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces
Owing to the unique combination of electrical conductivity and tissue-like mechanical properties, conducting polymer hydrogels have emerged as a promising candidate for bioelectronic interfacing with biological systems. However, despite the recent advances, the development of hydrogels with both excellent electrical and mechanical properties in physiological environments is still challenging. Here we report a bi-continuous conducting polymer hydrogel that simultaneously achieves high electrical conductivity (over 11 S cm−1), stretchability (over 400%) and fracture toughness (over 3,300 J m−2) in physiological environments and is readily applicable to advanced fabrication methods including 3D printing. Enabled by these properties, we further demonstrate multi-material 3D printing of monolithic all-hydrogel bioelectronic interfaces for long-term electrophysiological recording and stimulation of various organs in rat models.A bi-continuous hydrogel prepared from phase-separated PEDOT:PSS and polyurethane is 3D printed into soft biolelectronic devices with high electrical conductivity, stretchability and toughness for long-term in vivo electrophysiological monitoring and stimulation.
Pure PEDOT:PSS hydrogels
Hydrogels of conducting polymers, particularly poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), provide a promising electrical interface with biological tissues for sensing and stimulation, owing to their favorable electrical and mechanical properties. While existing methods mostly blend PEDOT:PSS with other compositions such as non-conductive polymers, the blending can compromise resultant hydrogels’ mechanical and/or electrical properties. Here, we show that designing interconnected networks of PEDOT:PSS nanofibrils via a simple method can yield high-performance pure PEDOT:PSS hydrogels. The method involves mixing volatile additive dimethyl sulfoxide (DMSO) into aqueous PEDOT:PSS solutions followed by controlled dry-annealing and rehydration. The resultant hydrogels exhibit a set of properties highly desirable for bioelectronic applications, including high electrical conductivity (~20 S cm −1 in PBS, ~40 S cm −1 in deionized water), high stretchability (> 35% strain), low Young’s modulus (~2 MPa), superior mechanical, electrical and electrochemical stability, and tunable isotropic/anisotropic swelling in wet physiological environments. Hydrogels of conducting polymers provide an electrical interface with biological tissues for sensing and stimulation, but currently have compromised mechanical and electrical properties. Here, the authors show a simple method to achieve pure PEDOT:PSS hydrogels that exhibit superior mechanical and electrical properties, stability, and tunable swelling.
Universally autonomous self-healing elastomer with high stretchability
Developing autonomous self-healing materials for applications in harsh conditions is challenging because the reconstruction of interaction in material for self-healing will experience significant resistance and fail. Herein, a universally self-healing and highly stretchable supramolecular elastomer is designed by synergistically incorporating multi-strength H-bonds and disulfide metathesis in polydimethylsiloxane polymers. The resultant elastomer exhibits high stretchability for both unnotched (14000%) and notched (1300%) samples. It achieves fast autonomous self-healing under universal conditions, including at room temperature (10 min for healing), ultralow temperature (−40 °C), underwater (93% healing efficiency), supercooled high-concentrated saltwater (30% NaCl solution at −10 °C, 89% efficiency), and strong acid/alkali environment (pH = 0 or 14, 88% or 84% efficiency). These properties are attributable to synergistic interaction of the dynamic strong and weak H-bonds and stronger disulfide bonds. A self-healing and stretchable conducting device built with the developed elastomer is demonstrated, thereby providing a direction for future e-skin applications. Developing autonomous self-healing materials for application under extreme conditions is challenging. Here, the authors design a highly stretchable elastomer by incorporation of H-bonds and disulphide methathesis, which shows efficient self-healing under extreme conditions.
Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors
In the last decade, significant developments of flexible and stretchable force sensors have been witnessed in order to satisfy the demand of several applications in robotic, prosthetics, wearables and structural health monitoring bringing decisive advantages due to their manifold customizability, easy integration and outstanding performance in terms of sensor properties and low-cost realization. In this paper, we review current advances in this field with a special focus on polymer/carbon nanotubes (CNTs) based sensors. Based on the electrical properties of polymer/CNTs nanocomposite, we explain underlying principles for pressure and strain sensors. We highlight the influence of the manufacturing processes on the achieved sensing properties and the manifold possibilities to realize sensors using different shapes, dimensions and measurement procedures. After an intensive review of the realized sensor performances in terms of sensitivity, stretchability, stability and durability, we describe perspectives and provide novel trends for future developments in this intriguing field.
Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Highly stretchable polymer semiconductor films through the nanoconfinement effect
Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.
Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
A scalable process is described for fabricating skin-like electronic circuitry that can be bent and stretched while retaining desirable electronic functionality. Electronics at a stretch Flexible electronics have a range of potential medical applications, particularly for devices that need to integrate seamlessly with humans. But to get the most out of such systems, the circuitry ideally needs to be stretchable as well as flexible, much like human skin. Zhenan Bao and colleagues have been exploring a strategy for achieving this combination of properties using polymeric electronic materials that are intrinsically stretchable. Now they demonstrate a scalable fabrication process in which such materials can be used to produce large-area, skin-like, electronic circuitry that can be bent and stretched while retaining its desirable electronic functionality. Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring 1 , 2 , medical treatment 3 , 4 , medical implants 5 and biological studies 6 , 7 , and for technologies that include human–machine interfaces, soft robotics and augmented reality 8 , 9 . Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array 2 , 10 , 11 , 12 . We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy 13 , 14 , 15 : such materials have been reported 11 , 16 , 17 , 18 , 19 , but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current–voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.