Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
432
result(s) for
"Structure, texture, density, mechanical behavior. Heat and gas exchanges"
Sort by:
Coarse and fine root plants affect pore size distributions differently
by
Bodner, G.
,
Kaul, H.-P.
,
Leitner, D.
in
Agricultural soils
,
Agronomy. Soil science and plant productions
,
Animal, plant and microbial ecology
2014
AIMS: Small scale root-pore interactions require validation of their impact on effective hydraulic processes at the field scale. Our objective was to develop an interpretative framework linking root effects on macroscopic pore parameters with knowledge at the rhizosphere scale. METHODS: A field experiment with twelve species from different families was conducted. Parameters of Kosugi’s pore size distribution (PSD) model were determined inversely from tension infiltrometer data. Measured root traits were related to pore variables by regression analysis. A pore evolution model was used to analyze if observed pore dynamics followed a diffusion like process. RESULTS: Roots essentially conditioned soil properties at the field scale. Rooting densities higher than 0.5 % of pore space stabilized soil structure against pore loss. Coarse root systems increased macroporosity by 30 %. Species with dense fine root systems induced heterogenization of the pore space and higher micropore volume. We suggested particle re-orientation and aggregate coalescence as main underlying processes. The diffusion type pore evolution model could only partially capture the observed PSD dynamics. CONCLUSIONS: Root systems differing in axes morphology induced distinctive pore dynamics. Scaling between these effective hydraulic impacts and processes at the root-pore interface is essential for plant based management of soil structure.
Journal Article
Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis
by
Morris, E. Kathryn
,
Rillig, Matthias C.
,
Leifheit, Eva F.
in
Abiotic factors
,
Acid soils
,
Agricultural soils
2014
Background and aims Soil aggregation is a crucial aspect of ecosystem functioning in terrestrial ecosystems. Arbuscular mycorrhizal fungi (AMF) play a key role in soil aggregate formation and stabilization. Here we quantitatively analyzed the importance of experimental settings as well as biotic and abiotic factors for the effectiveness of AMF to stabilize soil macroaggregates. Methods We gathered 35 studies on AMF and soil aggregation and tested 13 predictor variables for their relevance with a boosted regression tree analysis and performed a meta-analysis, fitting individual random effects models for each variable. Results and conclusions The overall mean effect of inoculation with AMF on soil aggregation was positive and predictor variable means were all in the range of beneficial effects. Pot studies and studies with sterilized sandy soil, near neutral soil pH, a pot size smaller than 2.5 kg and a duration between 2.2 and 5 months were more likely to result in stronger effects of AMF on soil aggregation than experiments in the field, with non-sterilized or fine textured soil or an acidic pH. This is the first study to quantitatively show that the effect of AMF inoculation on soil aggregation is positive and context dependent. Our findings can help to improve the use of this important ecosystem process, e.g. for inoculum application in restoration sites.
Journal Article
Rhizosphere: biophysics, biogeochemistry and ecological relevance
by
Bengough, A. Glyn
,
Young, Iain M.
,
Hinsinger, Philippe
in
Acid soils
,
Agricultural soils
,
Agronomy. Soil science and plant productions
2009
Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O₂ and CO₂, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.
Journal Article
Plant: soil interactions in temperate multi-cropping production systems
2014
BACKGROUND AND SCOPE: Multi-cropping approaches in production systems, where more than one crop cultivar or species are grown simultaneously, are gaining increased attention and application. Benefits can include increased production, effective pest, disease and weed control, and improved soil health. The effects of such practices on the range of interactions within the plant-soil system are manifest via plant interspecific competition, pest and disease attenuation, soil community composition and structure, nutrient cycling, and soil structural dynamics. Interplant diversity and competition effectively increases the nature and extent of root networks, tending to lead to more efficient resource use in time and space. Increased competitive ability at a system level, and allelopathic interactions, can reduce weed, pest and disease severity. Soil biotic communities are affected by plant diversity, which can increase abundance, diversity and activity of functional groups. Attendant rhizosphere-located processes can facilitate nutrient uptake between component crops. Whilst there are few studies into multi-cropping effects on soil structure, it is hypothesised that such processes are manifest particularly via the role which the belowground biota play in soil structural dynamics. A deeper understanding of eco-physiological processes affecting weed, pest and disease dynamics in the context of multiple cropping scenarios, and breeding cultivars to optimise mutualistic and allelopathic traits of crop mixtures could significantly increase productivity and adoption of more sustainable farming practices. CONCLUSIONS: Wider consideration needs to be given to plant: soil interactions when crop plants are grown in the context of mixtures, i.e. as communities as opposed to monotonous populations. In particular, a better understanding is required of how root systems develop in the context of mixtures and the extent to which resultant interactions with the soil biota are context-dependent. A significant challenge is that crop cultivars or production systems optimised for monocultural circumstances should not be assumed to be most suited for multi-cropping scenarios, and hence alternative strategies for developing new production systems need to take this into account.
Journal Article
Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas
by
Facelli, Evelina
,
Andrew Smith, F
,
Pope, Suzanne
in
Agricultural ecosystems
,
Agricultural soils
,
Agronomy. Soil science and plant productions
2010
Arbuscular mycorrhizal (AM) symbioses are formed by approximately 80% of vascular plant species in all major terrestrial biomes. In consequence an understanding of their functions is critical in any study of sustainable agricultural or natural ecosystems. Here we discuss the implications of recent results and ideas on AM symbioses that are likely to be of particular significance for plants dealing with abiotic stresses such as nutrient deficiency and especially water stress. In order to ensure balanced coverage, we also include brief consideration of the ways in which AM fungi may influence soil structure, carbon deposition in soil and interactions with the soil microbial and animal populations, as well as plant-plant competition. These interlinked outcomes of AM symbioses go well beyond effects in increasing nutrient uptake that are commonly discussed and all require to be taken into consideration in future work designed to understand the complex and multifaceted responses of plants to abiotic and biotic stresses in agricultural and natural environments.
Journal Article
Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use
by
Jud, K.
,
Bünemann, E. K.
,
Boivin, P.
in
aggregate stability
,
Agricultural soils
,
Agronomy. Soil science and plant productions
2013
Aims Drying and rewetting (DRW) often increases soil phosphorus (P) availability. Our aims were to elucidate underlying processes and assess potential plant uptake of released P. Methods Using a grassland soil with low available and high microbial P as a model, we studied the contributions of microbial and physicochemical processes to P release by determining DRW effects on i) C:P ratios of nutrient pulses in fresh and sterilized soils, ii) aggregate stability and iii) P forms released upon soil dispersion. Use of the P pulse by maize was examined in a bioassay and a split-root experiment. Results The strong P pulse after DRW was larger than that observed for C. Experiments with sterilized soil pointed to a non-microbial contribution to the pulse for P, but not for C. Aggregate disruption after DRW occurred due to slaking, and this released molybdate-reactive and -unreactive P. Maize benefitted from the P pulse only in the bioassay, i.e. when planted after the DRW cycle. Conclusions The majority of C and P released upon DRW originated from the microbial biomass, but for P release, physicochemical processes were also important. In the field, the released P would only be available to drought-resistant plants.
Journal Article
Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient
by
Cluzeau, D.
,
Menasseri, S.
,
Weigelt, A.
in
aggregate stability
,
Agricultural research
,
Agricultural soils
2013
BACKGROUND AND AIMS: Soil aggregate stability depends on plant community properties, such as functional group composition, diversity and biomass production. However, little is known about the relative importance of these drivers and the role of soil organisms in mediating plant community effects. METHODS: We studied soil aggregate stability in an experimental grassland plant diversity gradient and considered several explanatory variables to mechanistically explain effects of plant diversity and plant functional group composition. Three soil aggregate stability measures (slaking, mechanical breakdown and microcracking) were considered in path analyses. RESULTS: Soil aggregate stability increased significantly from monocultures to plant species mixtures and in the presence of grasses, while it decreased in the presence of legumes, though effects differed somewhat between soil aggregate stability measures. Using path analysis plant community effects could be explained by variations in root biomass, soil microbial biomass, soil organic carbon concentrations (all positive relationships), and earthworm biomass (negative relationship with mechanical breakdown). CONCLUSIONS: The present study identified important drivers of plant community effects on soil aggregate stability. The effects of root biomass, soil microbial biomass, and soil organic carbon concentrations were largely consistent across plant diversity levels suggesting that the mechanisms identified are of general relevance.
Journal Article
Three‐Dimensional Quantification of Intra‐Aggregate Pore‐Space Features using Synchrotron‐Radiation‐Based Microtomography
by
Horn, R.
,
Peth, S.
,
Donath, T.
in
Aggregates
,
agricultural soils
,
Agronomy. Soil science and plant productions
2008
Pore network geometries of intra‐aggregate pore spaces are of great importance for water and ion flux rates controlling C sequestration and bioremediation. Advances in non‐invasive three‐dimensional imaging techniques such as synchrotron‐radiation‐based x‐ray microtomography (SR‐μCT), offer excellent opportunities to study the interrelationships between pore network geometry and physical processes at spatial resolutions of a few micrometers. In this paper we present quantitative three‐dimensional pore‐space geometry analyses of small scale (∼5 mm across) soil aggregates from different soil management systems (conventionally tilled vs. grassland). Reconstructed three‐dimensional microtomography images at approximate isotropic voxel resolutions between 3.2 and 5.4 μm were analyzed for pore‐space morphologies using a suite of image processing algorithms associated with the software published by Lindquist et al. Among the features quantified were pore‐size distributions (PSDs), throat‐area distributions, effective throat/pore radii ratios as well as frequency distributions of pore channel lengths, widths, and flow path tortuosities. We observed differences in storage and transport relevant pore‐space morphological features between the two aggregates. Nodal pore volumes and throat surface areas were significantly smaller for the conventionally tilled (Conv.T.) aggregate (mode ≈ 7.9 × 10−7 mm3/≈ 63 μm2) than for the grassland aggregate (mode ≈ 5.0 × 10−6 mm3/≈ 400 μm2), respectively. Path lengths were shorter for the Conv.T. aggregate (maximum lengths < 200 μm) compared with the grassland aggregate (maximum lengths > 600 μm). In summary, the soil aggregate from the Conv.T site showed more gas and water transport limiting micromorphological features compared with the aggregate from the grassland management system.
Journal Article
Higher plant diversity enhances soil stability in disturbed alpine ecosystems
by
Alig, Dominik
,
Rixen, Christian
,
Pohl, Mandy
in
Aggregate stability
,
Agronomy. Soil science and plant productions
,
Animal, plant and microbial ecology
2009
Plant diversity is hypothesised to increase soil stability by increasing the diversity of root types. To test this hypothesis, we took soil cores from machine-graded ski slopes and from the adjacent undisturbed vegetation as a control. We quantified aggregate stability as an indicator for soil stability in relation to (1) abiotic soil properties, (2) above-ground vegetation characteristics and (3) root parameters. From the three groups of variables, the number of plant species, root density (RD) and sand content showed the highest correlation with soil aggregate stability and explained 54% of its variance. In variance partitioning, the number of plant species was the most relevant factor explaining 19% of the variance in aggregate stability. Further, it explained another 11% through shared effects with RD and sand content. An additional 8% was explained through the shared influence with sand content. Plant species showing the highest correlation with overall diversity were from different functional groups (grasses, forbs and shrubs), meaning that beneficial effects can not only be assigned to one specific functional group, but to the combination of several groups. Our data demonstrate the positive effect of plant diversity on aggregate stability. We suggest that high plant diversity is one of the most relevant factors for enhancing soil stability at disturbed sites at high elevation.
Journal Article
Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China
by
Lin, Chengfang
,
Guo, Jianfen
,
Chen, Guangshui
in
aggregate stability
,
Aggregation
,
Agricultural soils
2009
Soil labile fractions play an important role in improving soil quality due to its ability of maintaining soil fertility and minimizing negative environmental impacts. The objective of this study was to evaluate the effects of forest transition (conversion of natural broadleaf forests into monoculture tree plantations) on soil labile fractions (light fraction organic carbon, particulate organic carbon, and microbial biomass carbon). Soil samples were collected from a natural forest of Castanopsis kawakamii Hayata (NF) and two adjacent 36-year-old monoculture plantations of C. kawakamii (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF) at Xinkou Experimental Forestry Centre, southeastern China. In the 0-100 cm depth, the light fraction organic carbon (LFOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) were significantly lower in the CK and CF than in the NF (P < 0.05). Generally, LFOC, POC and MBC contents declined consistently with profile depth. Significant differences in LFOC, POC and MBC concentrations between the native forest and two plantations were detected at 0-40 cm depth, especially the top 10 cm, whereas there was less change below 40 cm, indicating that labile fraction losses due to forest transition mainly occurred in the surface soils. The three indices of labile organic carbon were closely correlated, suggesting they are interrelated properties. Labile fractions (LFOC, POC and MBC) were more sensitive indicators of SOC change resulting from the forest transition. We also found that forest types significantly affected the water stable aggregate >0.25 mm content (WSA) at the 0-10 cm depth. It suggested that converting old-growth native forest to intensively-managed plantations would reduce labile organic C, which may be attributed to a combination of factors including quantity of litter materials, microbial activity and management disturbances, which would change greatly with the forest conversion. How long these changes would persist needs the further study.
Journal Article