Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
132 result(s) for "Submitochondrial particles"
Sort by:
Mitochondrial DAMPs Increase Endothelial Permeability through Neutrophil Dependent and Independent Pathways
Trauma and sepsis can cause acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) in part by triggering neutrophil (PMN)-mediated increases in endothelial cell (EC) permeability. We had shown that mitochondrial (mt) damage-associated molecular patterns (DAMPs) appear in the blood after injury or shock and activate human PMN. So we now hypothesized that mitochondrial DAMPs (MTD) like mitochondrial DNA (mtDNA) and peptides might play a role in increased EC permeability during systemic inflammation and proceeded to evaluate the underlying mechanisms. MtDNA induced changes in EC permeability occurred in two phases: a brief, PMN-independent 'spike' in permeability was followed by a prolonged PMN-dependent increase in permeability. Fragmented mitochondria (MTD) caused PMN-independent increase in EC permeability that were abolished with protease treatment. Exposure to mtDNA caused PMN-EC adherence by activating expression of adherence molecule expression in both cell types. Cellular activation was manifested as an increase in PMN calcium flux and EC MAPK phosphorylation. Permeability and PMN adherence were attenuated by endosomal TLR inhibitors. EC lacked formyl peptide receptors but were nonetheless activated by mt-proteins, showing that non-formylated mt-protein DAMPs can activate EC. Mitochondrial DAMPs can be released into the circulation by many processes that cause cell injury and lead to pathologic endothelial permeability. We show here that mitochondria contain multiple DAMP motifs that can act on EC and/or PMN via multiple pathways. This can enhance PMN adherence to EC, activate PMN-EC interactions and subsequently increase systemic endothelial permeability. Mitochondrial DAMPs may be important therapeutic targets in conditions where inflammation pathologically increases endothelial permeability.
Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania
The present study evaluated the effects of AR-A014418 on behavioral and oxidative stress parameters of rats submitted to the animal model of mania induced by ouabain (OUA). Wistar rats were submitted to stereotaxic surgery and received a single intracerebroventricular (ICV) injection of artificial cerebrospinal fluid (aCSF), OUA, or AR-A014418. After 7 days, the animals were submitted to open-field test. After behavioral analysis, the brains were dissected in frontal cortex and hippocampus to the evaluation of oxidative stress. The OUA induced manic-like behavior in rats, which was reversed by AR-A014418 treatment. The ICV administration of OUA increases the levels of superoxide in submitochondrial particles, lipid hydroperoxide (LPH), 4-hydroxynonenal (4-HNE), 8-isoprostane, protein carbonyl, 3-nitrotyrosine, and activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) in both structures evaluated. In general, the treatment with AR-A014418 reversed these effects of OUA on the submitochondrial particles, LPH, 4-HNE, 8-isoprostane, protein carbonyl, 3-nitrotyrosine levels, and SOD activity. Furthermore, the injection of OUA decreased the catalase activity, and AR-A014418 promoted an increase in activity of this enzyme in the brain structures. These results suggest that GSK-3β inhibition can modulate manic-like behaviors. Also, it can be suggested that inhibition of GSK-3β can be effective against oxidative stress. However, more studies are needed to better elucidate these mechanisms. Graphical Abstract The effects of AR-A014418 on the behavioral and oxidative stress parameters in the animal model of mania induced by ouabain. Superoxide = superoxide production in submitochondrial particles; LPH = lipid hydroperoxide; 4-HNE = 4-hydroxynonenal; SOD = superoxide dismutase; GPx = glutathione peroxidase; GR = glutathione reductase.
Connexin/Innexin Channels in Cytoplasmic Organelles. Are There Intracellular Gap Junctions? A Hypothesis!
This paper proposes the hypothesis that cytoplasmic organelles directly interact with each other and with gap junctions forming intracellular junctions. This hypothesis originated over four decades ago based on the observation that vesicles lining gap junctions of crayfish giant axons contain electron-opaque particles, similar in size to junctional innexons that often appear to directly interact with junctional innexons; similar particles were seen also in the outer membrane of crayfish mitochondria. Indeed, vertebrate connexins assembled into hexameric connexons are present not only in the membranes of the Golgi apparatus but also in those of the mitochondria and endoplasmic reticulum. It seems possible, therefore, that cytoplasmic organelles may be able to exchange small molecules with each other as well as with organelles of coupled cells via gap junctions.
ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione
ABCB10 (ATP binding cassette sub-family B10) is a mitochondrial inner-membrane ABC transporter. ABCB10 has been shown to protect the heart from the impact of ROS during ischemia-reperfusion and to allow for proper hemoglobin synthesis during erythroid development. ABC transporters are proteins that increase ATP binding and hydrolysis activity in the presence of the transported substrate. However, molecular entities transported by ABCB10 and its regulatory mechanisms are currently unknown. Here we characterized ATP binding and hydrolysis properties of ABCB10 by using the 8-azido-ATP photolabeling technique. This technique can identify potential ABCB10 regulators, transported substrates and amino-acidic residues required for ATP binding and hydrolysis. We confirmed that Gly497 and Lys498 in the Walker A motif, Glu624 in the Walker B motif and Gly602 in the C-Loop motif of ABCB10 are required for proper ATP binding and hydrolysis activity, as their mutation changed ABCB10 8-Azido-ATP photo-labeling. In addition, we show that the potential ABCB10 transported entity and heme precursor delta-aminolevulinic acid (dALA) does not alter 8-azido-ATP photo-labeling. In contrast, oxidized glutathione (GSSG) stimulates ATP hydrolysis without affecting ATP binding, whereas reduced glutathione (GSH) inhibits ATP binding and hydrolysis. Indeed, we detectABCB10 glutathionylation in Cys547 and show that it is one of the exposed cysteine residues within ABCB10 structure. In all, we characterize essential residues for ABCB10 ATPase activity and we provide evidence that supports the exclusion of dALA as a potential substrate directly transported by ABCB10. Last, we show the first molecular mechanism by which mitochondrial oxidative status, through GSH/GSSG, can regulate ABCB10.
Mitochondrial chloride channels: electrophysiological characterization and pH induction of channel pore dilation
Physiological and pathological functions of mitochondria are highly dependent on the properties and regulation of mitochondrial ion channels. There is still no clear understanding of the molecular identity, regulation, and properties of anion mitochondrial channels. The inner membrane anion channel (IMAC) was assumed to be equivalent to mitochondrial centum picosiemens (mCS). However, the different properties of IMAC and mCS channels challenges this opinion. In our study, we characterized the single-channel anion selectivity and pH regulation of chloride channels from purified cardiac mitochondria. We observed that channel conductance decreased in the order: Cl −  > Br −  > I −  > chlorate ≈ formate > acetate, and that gluconate did not permeate under control conditions. The selectivity sequence was Br −  ≥ chlorate ≥ I −  ≥ Cl −  ≥ formate ≈ acetate. Measurement of the concentration dependence of chloride conductance revealed altered channel gating kinetics, which was demonstrated by prolonged mean open time value with increasing chloride concentration. The observed mitochondrial chloride channels were in many respects similar to those of mCS, but not those of IMAC. Surprisingly, we observed that acidic pH increased channel conductance and that an increase of pH from 7.4 to 8.5 reduced it. The gluconate current appeared and gradually increased when pH decreased from pH 7.0 to 5.6. Our results indicate that pH regulates the channel pore diameter in such a way that dilation increases with more acidic pH. We assume this newly observed pH-dependent anion channel property may be involved in pH regulation of anion distribution in different mitochondrial compartments.
Evaluation of copper toxicity in isolated human peripheral blood mononuclear cells and it's attenuation by zinc: ex vivo
Copper and zinc act as a cofactor of over 300 mammalian proteins. Both have same electronic configuration therefore they are antagonist at higher individual concentration. The present study was designed with the aim to investigate the mechanisms pertaining to toxic effects of copper on human peripheral blood mononuclear cells (PBMCs) and to evaluate the cytoprotective effect of zinc on copper-induced cytotoxicity. The copper uptake into PBMCs was progressively increased with increasing concentration of metal in the growth medium. However, no significant effect on copper uptake was observed in the presence of zinc. Cell proliferation rate was decreased with increasing copper concentration. Interestingly, the proliferation rate of zinc treated PBMCs remained nearly the same as that of control cells. LD(50) of copper (115 microM) was increased six times (710 microM) in presence of zinc for PBMCs. At higher concentrations of copper (> 100 microM) decrease level of GSH was noticed. Increased levels of metallothionein in PBMCs were observed in response to zinc. DNA fragmentation studies also showed that copper produced DNA fragmentation at LD(50) (115 microM). Subsequently, zinc showed protection against DNA fragmentation caused by copper. Cell structure of PBMCs at LD(50) (115 microM copper) showed membrane bound cystic spaces and mitochondria having disrupted cristae and few myelin figures. In presence of zinc at LD(50) of copper (115 microM) cells showed improvement in mitochondrial structure and membrane bound cystic spaces. Taken together, the results of our study demonstrates that zinc play an important role in prevention of copper toxicity in peripheral blood mononuclear cells.
ATP-sensitive K+ channel in the mitochondrial inner membrane
Mitochondria take up and extrude various inorganic and organic ions, as well as larger substances such as proteins. The technique of patch clamping should provide real-time information on such transport and on energy transduction in oxidative phosphorylation. It has been applied to detect microscopic currents from mitochondrial membranes and conductances of ion channels in the 5-1,000 pS range in the outer and inner membranes. These pores are not, however, selective for particular ions. Here we use fused giant mitoplasts prepared from rat liver mitochondria to identify a small conductance channel highly selective for K+ in the inner mitochondrial membrane. This channel can be reversibly inactivated by ATP applied to the matrix side under inside-out patch configuration; it is also inhibited by 4-aminopyridine and by glybenclamide. The slope conductance of the unitary currents measured at negative membrane potentials was 9.7 +/- 1.0 pS (mean +/- s.d., n = 6) when the pipette solution contained 100 mM K+ and the bathing solution 33.3 mM K+. Our results indicate that mitochondria depolarize by generating a K+ conductance when ATP in the matrix is deficient.
Localization of the Site of Oxygen Radical Generation inside the Complex I of Heart and Nonsynaptic Brain Mammalian Mitochondria
Mitochondrial production of oxygen radicals seems to be involved in many diseases and aging. Recent studies clearly showed that a substantial part of the free radical generation of rodent mitochondria comes from complex I. It is thus important to further localize the free radical generator site within this respiratory complex. In this study, superoxide production by heart and nonsynaptic brain submitochondrial particles from up to seven mammalian species, showing different longevities, were studied under different conditions. The results, taking together, show that rotenone stimulates NADH-supported superoxide generation, confirming that complex I is a source of oxygen radicals in mammals, in general. The rotenone-stimulated NADH-supported superoxide production of the heart and nonsynaptic brain mammalian submitochondrial particles was inhibited both by p-chloromercuribenzoate and by ethoxyformic anhydride. These results localize the complex I oxygen radical generator between the ferricyanide and the ubiquinone reduction site, making iron-sulfur centers possible candidates, although unstable semiquinones can not be discarded. The results also indicate that the previously described inverse correlation between rates of mitochondrial oxygen radical generation and mammalian longevity operates through mechanisms dependent on the presence of intact functional mitochondria.