Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,953 result(s) for "Sulfur Compounds - metabolism"
Sort by:
The Effect of Streptococcus salivarius K12 on Halitosis: a Double-Blind, Randomized, Placebo-Controlled Trial
This study was to evaluate the effect of Streptococcus salivarius K12 on tongue coating–associated halitosis. Twenty-eight subjects having tongue coating–associated halitosis were randomly divided into either a test or control group. For each of the 30 days, the test subjects sucked S. salivarius K12 tablet while the control subjects sucked placebo tablets. All the subjects did not take physical (tongue scraping) and chemical (antiseptic mouth-rinse) oral cavity pretreatment prior to use of the tablets. At baseline, and on the 1st, 7th, and 14th day after completing the course of tablets, the subjects were assessed for their organoleptic test (OLT) scores, volatile sulfur compound (VSC) levels, and tongue coating scores (TCS). During the course, all subjects kept their routine oral care habits without scraping their tongue coating. Plaque index, probing depth, and bleeding index were recorded at baseline and at the completion of the trial. On the 1st day following the end of tablet use, the OLT scores and VSC levels had significantly decreased in the test group when compared with the baseline values ( P  = 0.001 and P  = 0.012). The TCS in the test group were also significantly decreased ( P  = 0.05). At days 7 and 14, the OLT scores in the test group were still significantly lower than the baseline levels ( P  = 0.006 and P  = 0.039 respectively). However, there were no statistical differences with OLT, VSC, and TCS between the test group and the placebo group by analysis of multi-level regression model. The use of S. salivarius K12 did not have significant effect on halitosis with tongue coating cause when the tongue coating was not physically or chemically pre-treated, which implies removing tongue coating is required before Streptococcus salivarius K12 use.
Effectiveness of an oral care tablet containing kiwifruit powder in reducing oral bacteria in tongue coating: A crossover trial
Objectives The aim of this study was to investigate the effect of an oral care tablet containing kiwifruit powder on oral bacteria in tongue coating compared with tongue brushing. Material and methods Thirty‐two healthy, young adults were enrolled, and a crossover clinical trial was conducted. The volatile sulfur compound (VSC) concentration, Winkel tongue‐coating index (WTCI), and the number of total bacteria in addition to Fusobacterium nucleatum in tongue coating were measured. We instructed subjects to remove tongue coating by tongue brush for Intervention I, to keep the oral care tablet containing kiwifruit powder on the tongue dorsum and to let it dissolve naturally for Intervention II, and three oral care tablets 1 day before the measurement for Intervention III. Results There were significant differences in terms of the level of H2S, VSC, and WTCI at Intervention I and all evaluation values at Intervention II. There were significant differences in terms of the level of H2S, VSC, WTCI, the number of total bacteria, and F. nucleatum at Intervention III. The value of WTCI, the number of bacteria, and F. nucleatum decreased significantly after taking the oral care tablets than after tongue brushing. When compared with Interventions I and III, Intervention III showed the effective results; there were significant differences in the number of total bacteria and F. nucleatum between tongue brushing and taking tablets. Conclusions These results suggested that the oral care tablet containing kiwifruit powder could be effective in reducing total bacteria and F. nucleatum in tongue coating when compared with tongue brushing.
Covalent targeted radioligands potentiate radionuclide therapy
Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer 1 , 2 , 3 – 4 . A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge 5 , 6 . A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the ‘click’ SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted β- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets. Radiopharmaceuticals engineered with click chemistry to selectively bind to tumour-specific proteins can be used to successfully target tumour cells, boosting the pharmacokinetics of radionuclide therapy and improving tumour regression.
Photodynamic therapy as a novel treatment for halitosis in adolescents: study protocol for a randomized controlled trial
Background Halitosis is a common problem that affects a large portion of the population worldwide. The origin of this condition is oral in 90% and systemic in 10% of cases. The unpleasant odor is mainly the result of volatile sulfur compounds produced by Gram-negative bacteria. However, it has recently been found that anaerobic Gram-positive bacteria also produce hydrogen sulfide (H 2 S) in the presence of amino acids, such as cysteine. Light, both with and without the use of chemical agents, has been used to induce therapeutic and antimicrobial effects. In photodynamic therapy, the antimicrobial effect is confined to areas covered by photosensitizing dye. The aim of the present study is to evaluate the antimicrobial effect of photodynamic therapy on halitosis in adolescents through the analysis of volatile sulfur compounds measured using gas chromatography and microbiological analysis of coated tongue. Methods/Design A quantitative clinical trial will be carried out involving 60 adolescents randomly divided into the following groups: group 1 will receive treatment with a tongue scraper, group 2 will receive photodynamic therapy applied to the posterior two-thirds of the dorsum of the tongue, and group 3 will receive combined treatment (tongue scraper and photodynamic therapy). Gas chromatography (OralChroma TM ) and microbiological analysis will be used for the diagnosis of halitosis at the beginning of the study. Post-treatment evaluations will be conducted at one hour and 24 hours after treatment. The statistical analysis will include the Shapiro-Wilk test for the determination of the distribution of the data. If normal distribution is demonstrated, analysis of variance followed by Tukey’s test will be used to compare groups. The Kruskal-Wallis test followed by the Student-Newman-Keuls test will be used for data with non-normal distribution. Either the paired t -test or the Wilcoxon test will be used to compare data before and after treatment, depending on the distribution of the data. Discussion The results of this trial will determine the efficacy of using photodynamic therapy alone or in combination with a tongue scraper to treat bad breath in adolescents. Trial registration The protocol for this study was registered with Clinical Trials (registration number NCT02007993 ) on 10 December 2013.
The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle
Algae produce massive amounts of dimethylsulfoniopropionate (DMSP), which fuel the organosulfur cycle 1 , 2 . On a global scale, several petagrams of this sulfur species are produced annually, thereby driving fundamental processes and the marine food web 1 . An important DMSP transformation product is dimethylsulfide, which can be either emitted to the atmosphere 3 , 4 or oxidized to dimethylsulfoxide (DMSO) and other products 5 . Here we report the discovery of a structurally unusual metabolite, dimethylsulfoxonium propionate (DMSOP), that is synthesized by several DMSP-producing microalgae and marine bacteria. As with DMSP, DMSOP is a low-molecular-weight zwitterionic metabolite that carries both a positively and a negatively charged functional group. Isotope labelling studies demonstrate that DMSOP is produced from DMSP, and is readily metabolized to DMSO by marine bacteria. DMSOP was found in near nanomolar amounts in field samples and in algal culture media, and thus represents—to our knowledge—a previously undescribed biogenic source for DMSO in the marine environment. The estimated annual oceanic production of oxidized sulfur from this pathway is in the teragram range, similar to the calculated dimethylsulfide flux to the atmosphere 3 . This sulfoxonium metabolite is therefore a key metabolite of a previously undescribed pathway in the marine sulfur cycle. These findings highlight the importance of DMSOP in the marine organosulfur cycle. A structurally unusual zwitterionic metabolite, dimethylsulfoxonium propionate (DMSOP), is synthesized by several dimethylsulfoniopropionate-producing microalgae and marine bacteria and is readily metabolized into dimethylsulfoxide by marine bacteria, expanding our knowledge of the marine organosulfur cycle.
Sulfur metabolites in the pelagic ocean
Marine microorganisms play crucial roles in Earth’s element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a crucial player in climate processes. With sulfur already being well studied in the ocean in its inorganic forms, organic sulfur compounds are emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can readily be reduced by phytoplankton, provides a freely available source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly assimilated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, cofactors, signalling compounds and antibiotics. In this Review, we examine the current knowledge of sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microorganisms, and the ecological links facilitated by their diversity in structures, oxidation states and chemistry.
Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology
Sulfur contributes significantly to nature chemical diversity and thanks to its particular features allows fundamental biological reactions that no other element allows. Sulfur natural compounds are utilized by all living beings and depending on the function are distributed in the different kingdoms. It is no coincidence that marine organisms are one of the most important sources of sulfur natural products since most of the inorganic sulfur is metabolized in ocean environments where this element is abundant. Terrestrial organisms such as plants and microorganisms are also able to incorporate sulfur in organic molecules to produce primary metabolites (e.g., methionine, cysteine) and more complex unique chemical structures with diverse biological roles. Animals are not able to fix inorganic sulfur into biomolecules and are completely dependent on preformed organic sulfurous compounds to satisfy their sulfur needs. However, some higher species such as humans are able to build new sulfur-containing chemical entities starting especially from plants’ organosulfur precursors. Sulfur metabolism in humans is very complicated and plays a central role in redox biochemistry. The chemical properties, the large number of oxidation states, and the versatile reactivity of the oxygen family chalcogens make sulfur ideal for redox biological reactions and electron transfer processes. This review will explore sulfur metabolism related to redox biochemistry and will describe the various classes of sulfur-containing compounds spread all over the natural kingdoms. We will describe the chemistry and the biochemistry of well-known metabolites and also of the unknown and poorly studied sulfur natural products which are still in search for a biological role.
Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans
Acidithiobacillus ferrooxidans is a gram-negative, autotrophic and rod-shaped bacterium. It can gain energy through the oxidation of Fe(II) and reduced inorganic sulfur compounds for bacterial growth when oxygen is sufficient. It can be used for bio-leaching and bio-oxidation and contributes to the geobiochemical circulation of metal elements and nutrients in acid mine drainage environments. The iron and sulfur oxidation pathways of A. ferrooxidans play key roles in bacterial growth and survival under extreme circumstances. Here, the electrons transported through the thermodynamically favourable pathway for the reduction to H2O (downhill pathway) and against the redox potential gradient reduce to NAD(P)(H) (uphill pathway) during the oxidation of Fe(II) were reviewed, mainly including the electron transport carrier, relevant operon and regulation of its expression. Similar to the electron transfer pathway, the sulfur oxidation pathway of A. ferrooxidans, related genes and operons, sulfur oxidation mechanism and sulfur oxidase system are systematically discussed.
The potential for coupled organic and inorganic sulfur cycles across the terrestrial deep subsurface biosphere
Organosulfur compounds (OrgS) are fundamental components of life’s biomass, yet the cycling of these compounds in the terrestrial deep subsurface, one of Earth’s largest ecosystems, has gone relatively unexplored. Here, we show that all subsurface microbial genomes reconstructed from Soudan Underground Mine State Park have the capacity to cycle organic sulfur species. Our findings suggest that OrgS degradation may be an integral link between the organic and inorganic sulfur cycle via the production of sulfite and sulfide. Furthermore, despite isolation from surface ecosystems, most Soudan microorganisms retained genes for dimethylsulfoniopropionate and taurine biosynthesis. Metagenomic analyses of an additional 54 deep subsurface sites spanning diverse lithologies revealed the capacity for OrgS cycling to be widespread, occurring in 89% of assembled metagenomes. Our results indicate that consideration of OrgS cycling may be necessary to accurately constrain sulfur fluxes, discern the energetic limits of deep life, and determine the impact of deep subsurface biogeochemical sulfur cycling on greater Earth system processes. Organic sulfur compounds are vital to life but often overlooked in the sulfur cycle, especially in the subsurface. Subsurface microbes can metabolize diverse organosulfur compounds, hinting at a more complex sulfur cycle than previously thought.
Organic sulfur was integral to the Archean sulfur cycle
The chemistry of the Early Earth is widely inferred from the elemental and isotopic compositions of sulfidic sedimentary rocks, which are presumed to have formed globally through the reduction of seawater sulfate or locally from hydrothermally supplied sulfide. Here we argue that, in the anoxic Archean oceans, pyrite could form in the absence of ambient sulfate from organic sulfur contained within living cells. Sulfides could be produced through mineralization of reduced sulfur compounds or reduction of organic-sourced sulfite. Reactive transport modeling suggests that, for sulfate concentrations up to tens of micromolar, organic sulfur would have supported 20 to 100% of sedimentary pyrite precipitation and up to 75% of microbial sulfur reduction. The results offer an alternative explanation for the low range of δ 34 S in Archean sulfides, and raise a possibility that sulfate scarcity delayed the evolution of dissimilatory sulfate reduction until the initial ocean oxygenation around 2.7 Ga. Marine chemistry during the Early Earth (over 2.7 billion years ago) is commonly inferred to have been inorganically sulfate-reducing. Here, the authors argue that organic sulfur cycling may have played a previously unrecognized, yet important, role in the formation of ancient Archean marine sulfides.