Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
310 result(s) for "Sumac"
Sort by:
Sumac Extract for Effective Aluminum Corrosion Inhibition in HCl Solution
Several studies on progressively inhibiting aluminum elements have been conducted in recent years to combat corrosion issues. Aluminum in the HCl medium may also be updated in the coming years. The key to promoting this technology is achieving a reliable inhibitor for aluminum corrosion in the HCl medium. In this study, different electrochemical methods (EIS and polarization) were used on sumac extract to investigate the inhibitory effect of sumac extract (SE) on aluminum corrosion in a 1 M HCl medium at different temperatures. FTIR analysis reveals the presence of nitrogen and oxygen atoms and aromatic rings, which are responsible for the inhibitory effect of SE. The protection of aluminum surface due to SE presence is supported by the study of sample surfaces (FE-SEM and AFM). Surface studies confirmed corroded surfaces with higher roughness in the absence of SE, while SE caused smooth surfaces. The adsorption of this inhibitor on the sample surface follows the Langmuir isotherm. SE adsorption is enhanced with increasing temperature to 308 K, resulting in higher inhibitory effect at this temperature, approved by EIS and polarization test. The highest inhibition of 99% was recorded by both EIS and polarization methods at 308 K in the presence of 200 mg/L SE. Graphical Abstract
Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles
The usage of the green synthesis method to produce nanoparticles (NPs) has received great acceptance among the scientific community in recent years. This, perhaps, is owing to its eco-friendliness and the utilization of non-toxic materials during the synthesizing process. The green synthesis approach also supplies a reducing and a capping agent, which increases the stability of the NPs through the available phytochemicals in the plant extractions. The present study describes a green synthesis method to produce nano-silica (SiO 2 ) NPs utilizing Rhus coriaria L. extract and sodium metasilicate (Na 2 SiO 3 .5H 2 O) under reflux conditions. Sodium hydroxide (NaOH) is added to the mixture to control the pH of the solution. Then, the obtained NPs have been compared with the chemically synthesized SiO 2 NPs. The structure, thermal, and morphological properties of the SiO 2 NPs, both green synthesized and chemically synthesized, were characterized using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). Also, the elemental compassion distribution was studied by energy-dispersive X-ray spectroscopy (EDX). In addition, the zeta potential, dynamic light scatter (DLS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) was used to study the stability, thermal properties, and surface area of the SiO 2 NPs. The overall results revealed that the green synthesis of SiO 2 NPs outperforms chemically synthesized SiO 2 NPs. This is expected since the green synthesis method provides higher stability, enhanced thermal properties, and a high surface area through the available phytochemicals in the Rhus coriaria L. extract.
Effect of extraction methods on the efficiency of sumac (Rhus coriaria L.) fruit extract in soybean oil quality during accelerated conditions
Herbal extracts containing natural bioactive substances with numerous beneficial effects have been recently noticed as appropriate alternatives for synthetic food preservatives. In this study, we aimed to optimize the effects of different sumac (Rhus coriaria) fruit extracts (SFE) on oxidative stability of soybean oil under accelerated conditions compared to a synthetic antioxidant. Hydro‐ethanolic extracts (70%) of sumac fruits were prepared by three methods of immersion (I‐SFE), ultrasound (U‐SFE), and microwave (M‐SFE). According to the response surface methodology (RSM), 13 runs were considered in the concentrations of 0, 500, and 1000 ppm of each extract that were added to the soybean oil and stored at 60°C for a 20‐day period. All of the treatments were significantly (p < .05) efficient in preventing the chemical and sensory changes of soybean oil compared to the control in the dose‐dependent manner during storage period. I‐SFE treatment showed the lowest peroxide value (PV) (0.000063 meq (milliequivalents) O2/kg oil), thiobarbituric acid reactive substances (TBARS) (115.06 MDA (malondialdehyde)/kg oil), and acid value (0.0169 mg KOH (potassium hydroxide)/kg oil) among the other extracts at the end of the storage period. Furthermore, I‐SFE treatment earned the highest sensory scores (flavor, color, odor, and overall acceptability) of soybean oil in the range of 4–5 in comparison to the other treatments and synthetic antioxidant during storage time. According to the analysis of RSM, I‐SFE in the concentration of 999.998 ppm could optimally enhance the shelf life of soybean oil for 11.3614 days under accelerated conditions. It was concluded that I‐SFE with the same efficiency as synthetic antioxidants can be considered as a suitable alternative in soybean oil with various health benefits. It was concluded that immersion‐assisted extraction method‐sumac fruit extract (I‐SFE) with the same efficiency as synthetic antioxidants can be considered as a suitable alternative in soybean oil with various health benefits.
Effects of light pollution on tree phenology in the urban environment
Research on urban climates has been an important topic in recent years, given the growing number of city inhabitants and significant influences of climate on health. Nevertheless, far less research has focused on the impacts of light pollution, not only on humans, but also on plants and animals in the landscape. This paper reports a study measuring the intensity of light pollution and its impact on the autumn phenological phases of tree species in the town of Zvolen (Slovakia). The research was carried out at two housing estates and in the central part of the town in the period 2013–2016. The intensity of ambient nocturnal light at 18 measurement points was greater under cloudy weather than in clear weather conditions. Comparison with the ecological standard for Slovakia showed that average night light values in the town centre and in the housing estate with an older type of public lighting, exceeded the threshold value by 5 lux. Two tree species, sycamore maple (Acer pseudoplatanus L.) and staghorn sumac (Rhus typhina L.), demonstrated sensitivity to light pollution. The average onset of the autumn phenophases in the crown parts situated next to the light sources was delayed by 13 to 22 days, and their duration was prolonged by 6 to 9 days. There are three major results: (i) the effects of light pollution on organisms in the urban environment are documented; (ii) the results provide support for a theoretical and practical basis for better urban planning policies to mitigate light pollution effects on organisms; and (iii) some limits of the use of plant phenology as a bioindicator of climate change are presented.
Element and Water-Soluble Vitamins Profile of Rhus coriaria L. (Sumac) Grown in Different Regions
In this study, the amounts of some elements and water-soluble vitamins in Rhus coriaria L. (Sumac) samples grown in different regions were analyzed by ICP-OES and HPLC, respectively. The maximum amount of Na, K, Mg, and P was determined in the sumac samples of Kadana, Sheladize, Maraş, and Derishke regions, respectively. The richest regions in terms of trace elements such as Zn, Cu, Fe, Se, Mn, Cr, Mo, Ni, and B were Charput, Derishke, Ranya, Charput, Ranya, Derishke, Elazığ, Derishke, and Kadana, respectively. The highest amount of As, Cd, Pb, and Hg in sumac samples were determined in Kadana, Kadana, Trawanish, and Charput regions, respectively, while the lowest amounts were determined in Maraş, Sheladize, Elazig, and Trawanish regions sumac samples. Since target hazard coefficient (THQ) and total target hazard coefficient (TTHQ) values calculated for minor, toxic and heavy metals investigated in sumac samples are well below one; therefore, they do not pose a health risk. From the result obtained, sumac is a good food additive spice in terms of water-soluble vitamins except ascorbic acid. The amounts of ascorbic acid, thiamine, riboflavin, nicotine amide, nicotinic acid, pantothenic acid, pyridoxine, folic acid, and cyanocobalamin in sumac samples varied between 78.90–36.57, 173.57–61.11, 518.4–182.3, 314.0–105.6, 1292.1–788.7, 779.2–301.7, 385.8–133.4, 826.2–473.1, and 192.6–73.9 µg/g dw, respectively. Differences in the amount of elements and water-soluble vitamins among sumac samples from different regions may be due to geographical and ecological reasons.
Green synthesis of SiO.sub.2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO.sub.2 nanoparticles
The usage of the green synthesis method to produce nanoparticles (NPs) has received great acceptance among the scientific community in recent years. This, perhaps, is owing to its eco-friendliness and the utilization of non-toxic materials during the synthesizing process. The green synthesis approach also supplies a reducing and a capping agent, which increases the stability of the NPs through the available phytochemicals in the plant extractions. The present study describes a green synthesis method to produce nano-silica (SiO.sub.2) NPs utilizing Rhus coriaria L. extract and sodium metasilicate (Na.sub.2 SiO.sub.3 .5H.sub.2 O) under reflux conditions. Sodium hydroxide (NaOH) is added to the mixture to control the pH of the solution. Then, the obtained NPs have been compared with the chemically synthesized SiO.sub.2 NPs. The structure, thermal, and morphological properties of the SiO.sub.2 NPs, both green synthesized and chemically synthesized, were characterized using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). Also, the elemental compassion distribution was studied by energy-dispersive X-ray spectroscopy (EDX). In addition, the zeta potential, dynamic light scatter (DLS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) was used to study the stability, thermal properties, and surface area of the SiO.sub.2 NPs. The overall results revealed that the green synthesis of SiO.sub.2 NPs outperforms chemically synthesized SiO.sub.2 NPs. This is expected since the green synthesis method provides higher stability, enhanced thermal properties, and a high surface area through the available phytochemicals in the Rhus coriaria L. extract.
Seed Cryopreservation and Germination of Rhus glabra and the Critically Endangered Species Rhus michauxii
Rhus michauxii is a perennial rhizomatous shrub native to the southeastern United States that is found mainly in sunny, dry, open rocky or sandy woodlands. Moreover, it is found on ridges or river bluffs in the inner coastal plane and lower piedmont of Virginia, Georgia, and the Carolinas. Habitat conversion to agriculture, suppression of fires, and low reproduction have caused R. michauxii to become rare and it is now federally listed as threatened. Methods are needed to multiply and conserve R. michauxii. Protocols were developed for seed cryopreservation, in vitro germination, and micropropagation for R. glabra and R. michauxii. Seed scarification in concentrated sulfuric acid for 6 h and germination on ½ MS medium resulted in germination up to 96% for control and cryopreserved seeds of R. glabra and 70 and 40% for control and cryopreserved seeds of R. michauxii. Shortly after germination in vitro, young seedlings were established in a greenhouse potting mix providing new plants from the endemic Georgia R. michauxii populations. Several of the findings meet goals within the R. michauxii recovery plan by providing methods for sexual and asexual multiplication and long-term seed storage under cryogenic conditions. The protocols developed will assist in the safeguarding and conservation of dwindling natural R. michauxii populations.
Plant species richness at archaeological sites suggests ecological legacy of Indigenous subsistence on the Colorado Plateau
Humans have both intentional and unintentional impacts on their environment, yet identifying the enduring ecological legacies of past small-scale societies remains difficult, and as such, evidence is sparse. The present study found evidence of an ecological legacy that persists today within an semiarid ecosystem of western North America. Specifically, the richness of ethnographically important plant species is strongly associated with archaeological complexity and ecological diversity at Puebloan sites in a region known as Bears Ears on the Colorado Plateau. A multivariate model including both environmental and archaeological predictors explains 88% of the variation in ethnographic species richness (ESR), with growing degree days and archaeological site complexity having the strongest effects. At least 31 plant species important to five tribal groups (Navajo, Hopi, Zuni, Ute Mountain Ute, and Apache), including the Four Corners potato (Solanum jamesii), goosefoot (Chenopodium sp.), wolfberry (Lycium pallidum), and sumac (Rhus trilobata), occurred at archaeological sites, despite being uncommon across thewider landscape. Our results reveal a clear ecological legacy of past human behavior: even when holding environmental variables constant, ESR increases significantly as a function of past investment in habitation and subsistence. Consequently, we suggest that propagules of some species were transported and cultivated, intentionally or not, establishing populations that persist to this day. Ensuring persistence will require tribal input for conserving and restoring archaeo-ecosystems containing “high-priority” plant species, especially those held sacred as lifeway medicines. This transdisciplinary approach has important implications for resource management planning, especially in areas such as Bears Ears that will experience greater visitation and associated impacts in the near future.
Rhus coriaria L. (Sumac), a Versatile and Resourceful Food Spice with Cornucopia of Polyphenols
In recent years, utilization of Rhus coriaria L. (sumac) is upgrading not only in their culinary use and human nutrition, but also in the pharmaceutical industry, food industry and veterinary practices. This is driven by accumulating evidence that support the ethnobotanical use of this plant; in particular, advanced knowledge of the content of nutritional, medicinal and techno-functional bioactive ingredients. Herein, we discuss polyphenolic compounds as the main bioactive ingredients in Rhus coriaria L., which contribute mainly to the significance and utility of this spice. Most of the antioxidant potential and therapeutic roles of sumac are increasingly attributed to its constituent tannins, flavonoids, and phenolic acids. Hydroxyphenyl pyranoanthocyanins and other anthocynins are responsible for the highly desired red pigments accounting for the strong pigmentation capacity and colorant ability of sumac. Certain polyphenols and the essential oil components are responsible for the peculiar flavor and antimicrobial activity of sumac. Tannin-rich sumac extracts and isolates are known to enhance the food quality and the oxidative stability of animal products such as meat and milk. In conclusion, polyphenol-rich sumac extracts and its bioactive ingredients could be exploited towards developing novel food products which do not only address the current consumers’ interests regarding organoleptic and nutritional value of food, but also meet the growing need for ‘clean label’ as well as value addition with respect to antioxidant capacity, disease prevention, and health promotion in humans.