Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,033 result(s) for "Summer monsoon"
Sort by:
Effects of intraseasonal oscillation on South China Sea summer monsoon onset
Understanding of South China Sea (SCS) summer monsoon (SCSSM) onset response to tropical intraseasonal oscillation (ISO) is critical for extended-range prediction of SCSSM onset. In this study, we investigate the effect of ISO on SCSSM onset for the period of 1980–2013. The 34 onset cases are classified into three groups, early onsets around May 6th, normal onsets around May 21st and late onsets around June 8th, and the late onsets are even later than the Indian monsoon onsets. Before each onset, the SCS experiences a dry ISO phase to precondition the convective energy due to the easterly wind anomalies of the wet ISO phase over the tropical Indian Ocean for the group of early onsets, over the southern Bay of Bengal monsoon region for the group of normal onsets and over the southern Indian monsoon region for the group of late onsets. After each onset, the SCSSM is supported by the westerly wind anomalies of the dry ISO phase over these associated regions. Each early SCSSM onset is triggered by the northwestward propagating Rossby wave of the wet ISO in the western Pacific which comes from the Indian Ocean. For each normal (late) onset, the SCSSM is triggered by synoptic-scale low-level westerlies in conjunction with seasonal low-level westerlies when the wet ISO moves to the northern Bay of Bengal region (Indian monsoon region), since this convection to the north of 10°N cannot excite the easterly wind anomalies associated with Kelvin wave responses over the SCS to suppress the convection. The mechanisms explaining the mean state-controlled ISO-SCSSM onset relationship are also discussed.
Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation
The uplift of orogenic plateaus has been assumed to be coincident with the fluvial incision of the gorges that commonly cut plateau margins. The Mekong River, which drains the eastern Qiangtang Terrane and southeastern Tibetan Plateau, is one of the ten largest rivers in the world by water and sediment discharge. When the Mekong River was established remains highly debated—with estimates that range from more than 55 to less than 5 million years ago—despite being a key constraint on the elevation history of the Tibetan Plateau. Here we report low-temperature thermochronology data from river bedrock samples that reveal a phase of rapid downward incision (>700 m) of the Mekong River during the middle Miocene about 17 million years ago, long after the uplift of the central and southeastern Tibetan Plateau. However, this coincides with a period of enhanced East Asian summer monsoon precipitation over the region compared with the early Miocene. Using stream profile modelling, we demonstrate that such an increase in precipitation could have produced the observed incision in the Mekong River. In the absence of an obvious tectonic contribution, we suggest that the rapid incision of the Tibetan Plateau and the establishment of the Mekong River in the middle Miocene may be attributed to increased erosion during a period of high monsoon precipitation.
Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence
Weather and climate in a location are generally affected by global climatic phenomena. Monsoons and teleconnections are two climatic phenomena that have been assessed in specific regions for their correlations with regional precipitation. This study characterized the effects of monsoons and climate teleconnections on precipitation in eight climate zones across China. Correlations between monthly precipitation from 1951 to 2013 across the eight zones and each of two important monsoon indices [the Indian Summer Monsoon (ISM) and East Asian Summer Monsoon (EASM)] and two major teleconnection indices [El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)] were analyzed based on wavelet coherence and global coherence. The results demonstrated that on the annual timescale, monsoons have stronger effects than teleconnections on monthly precipitation in each of the eight climate zones. On the intra-annual (0.5–1 year) and inter-annual (2–10 year) scales, the ISM mainly affects precipitation in the East Arid Region, Northeastern China, Northern China, and Qinghai-Tibet Plateau; the EASM mainly affects Northern China, Central China, and Southern China; the ENSO mainly affects Western Arid/Semiarid region and Qinghai-Tibet Plateau; the PDO mainly affects the Western Arid/Semiarid region. On the decadal timescale, the ISM mainly affects the Western arid/Semiarid and Central China; the EASM mainly affects Western arid/Semiarid, Central China, and Qinghai–Tibet Plateau; the ENSO mainly affects Northeastern China and Central China; and the PDO mainly affects East arid and Southern China regions. These findings provide a practical reference for water resources management and/or for the prediction of precipitation in different regions of China.
Variability of Indian summer monsoon droughts in CMIP5 climate models
Variability of Indian summer monsoon droughts is investigated by computing all-India drought indices namely Percent of Normal Precipitation, Standardized Precipitation Index and percentage area of India under moderate and severe drought conditions. Observations for recent decades, post 1960, exhibit declining trend in monsoon rainfall with frequent occurrence and intensification of droughts along with an increase in percentage of area under moderate and severe drought conditions, in association with variations in sea surface temperature (SST). Historical simulations from CMIP5 models suggest that two models, ACCESS1.0 and INMCM4, could well simulate monsoon rainfall variability, particularly the frequent occurrence of droughts and spatial variability of rainfall during drought years in recent historical period (1961–2005). Future projections of all-India drought indices from these two models indicate frequent droughts during near and mid future (2010–2069) with respect to the recent historical period. Intensification of severe droughts for near and mid future are suggested to be more pronounced over north-central India. The reduction in rainfall in the near and mid future is dynamically consistent with a westward shift in large-scale monsoon circulation, particularly the monsoon trough over South Asia. Interestingly, future projections of monsoon teleconnections indicate a weakening (strengthening) of in-phase (out-of-phase) relationship of all-India drought intensity with the equatorial eastern Pacific and the Indian Ocean (western Pacific) SST. Whereas, a strengthening of in-phase relationship between percentage of area under drought conditions and the equatorial eastern Pacific SST is projected for near and mid future with respect to the recent historical period. These drought features are consistent in both the models.
Forecast skill of the Indian monsoon and its onset in the ECMWF seasonal forecasting system 5 (SEAS5)
Accurate forecasting of variations in Indian monsoon precipitation and progression on seasonal time scales remains a challenge for prediction centres. We examine prediction skill for the seasonal-mean Indian summer monsoon and its onset in the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting system 5 (SEAS5). We analyse summer hindcasts initialised on 1st of May, with 51 ensemble members, for the 36-year period of 1981–2016. We evaluate the hindcasts against the Global Precipitation Climatology Project (GPCP) precipitation observations and the ECMWF reanalysis 5 (ERA5). The model has significant skill at forecasting dynamical features of the large-scale monsoon and local-scale monsoon onset tercile category one month in advance. SEAS5 shows higher skill for monsoon features calculated using large-scale indices compared to those at smaller scales. Our results also highlight possible model deficiencies in forecasting the all India monsoon rainfall.
Multidecadal see-saw of the impact of ENSO on Indian and West African summer monsoon rainfall
The strength of the simultaneous linear relationship between El Niño/Southern Oscillation (ENSO) and Indian summer monsoon (ISM) precipitation show strong variations on a decadal timescale. While some studies attribute this to shift in the state of the climate and consequent teleconnection pattern, some other argue this as natural variability between two random time series. In this study, we show that the relationship between West African Summer Monsoon (WASM) precipitation with ENSO also experiences decadal timescale oscillation. While the ENSO–ISM relationship weakened during the past seven decades, ENSO–WASM relationship strengthened to above the 95% significance level. We explain this multi-decadal see-saw of strong–weak impact of ENSO on ISM and WASM through a common mechanism. ENSO impacts ISM and WASM rainfall by modulating the upper tropospheric temperature of subtropical Africa and South Asia. While the impact of ENSO on this temperature anomaly was strong and concentrated over the northwest of Indian region before the 1980, the anomalies are spatially discontinuous and weak after 1980. Moreover, a westward shift of the center of this anomaly after 1980 help strengthen the ENSO–WASM relationship. We also show a dramatic change in the relationship between Atlantic Niño and ENSO before and after the 1980s. While before 1980 ENSO did not have much impact on Atlantic Nino index-3 (ATL3), after 1980 El Niño (La Niña) is coincidental with negative (positive) ATL3 index. Since a negative (positive) ATL3 reduce (enhance) WASM by increased south-westerly moisture flux, the ENSO–WASM relationship strengthens after 1980. Our study suggests that the decadal variations of ENSO–ISM and ENSO–WASM relationship is physically linked and possibly could not be due to pure noise in the time series.
Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China
By using the monthly ERA-40 reanalysis data and observed rainfall data, we investigated the effect of the Indian summer monsoon (ISM) on the South Asian High (SAH) at 200 hPa, and the role played by the SAH in summer rainfall variation over China. It is found that in the interannual timescale the east–west shift is a prominent feature of the SAH, with its center either over the Iranian Plateau or over the Tibetan Plateau. When the ISM is stronger (weaker) than normal, the SAH shifts westward (eastward) to the Iranian Plateau (Tibetan Plateau). The east–west position of SAH has close relation to the summer rainfall over China. A westward (eastward) location of SAH corresponds to less (more) rainfall in the Yangtze-Huai River Valley and more (less) rainfall in North China and South China. A possible physical process that the ISM affects the summer rainfall over China via the SAH is proposed. A stronger (weaker) ISM associated with more (less) rainfall over India corresponds to more (less) condensation heat release and anomalous heating (cooling) in the upper troposphere over the northern Indian peninsula. The anomalous heating (cooling) stimulates positive (negative) height anomalies to its northwest and negative (positive) height anomalies to its northeast in the upper troposphere, causing a westward (eastward) shift of the SAH with its center over the Iranian Plateau (Tibetan Plateau). As a result, an anomalous cyclone (anticyclone) is formed over the eastern Tibetan Plateau and eastern China in the upper troposphere. The anomalous vertical motions in association with the circulation anomalies are responsible for the rainfall anomalies over China. Our present study reveals that the SAH may play an important role in the effect of ISM on the East Asian summer monsoon.
The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective
The thermal forcing of the Tibetan Plateau (TP) is analyzed to investigate the formation and variability of Tibetan Plateau Summer Monsoon (TPSM), which affects the climates of the surrounding regions, in particular the Indian summer monsoon precipitation. Dynamic composites and statistical analyses indicate that the Indian summer monsoon precipitation is less/greater than normal during the strong/weak TPSM. Strong (weak) TPSM is associated with an anomalous near surface cyclone (anticyclone) over the western part of the Tibetan Plateau, enhancing (reducing) the westerly flow along its southern flank, suppressing (favoring) the meridional flow of warm and moist air from the Indian ocean and thus cutting (providing) moisture supply for the northern part of India and its monsoonal rainfall. These results are complemented by a dynamic and thermodynamic analysis: (i) A linear thermal vorticity forcing primarily describes the influence of the asymmetric heating of TP generating an anomalous stationary wave flux. Composite analysis of anomalous stationary wave flux activity (after Plumb in J Atmos Sci 42:217–229, 1985 ) strongly indicate that non-orographic effects (diabatic heating and/or interaction with transient eddies) of the Tibetan Plateau contribute to the generation of an anomalous cyclone (anti-cyclone) over the western TP. (ii) Anomalous TPSM generation shows that strong TPSM years are related to the positive surface sensible heating anomalies over the eastern TP favoring the strong diabatic heating in summer. While negative TPSM years are associated with the atmospheric circulation anomalies during the preceding spring, enhancing northerly dry-cold air intrusions into TP, which may weaken the condensational heat release in the middle and upper troposphere, leading to a weaker than normal summer monsoon over the TP in summer.
Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation
The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon-induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation.During deglacial warming at Termination II, about 130,000 years ago, the Indian summer monsoon helped convey heat northwards as deglaciation progressed from the Southern to the Northern Hemisphere, according to sediment records from the Bay of Bengal.
Evaluation of precipitation extremes over the Asian domain: observation and modelling studies
In this study, a comparison in the precipitation extremes as exhibited by the seven reference datasets is made to ascertain whether the inferences based on these datasets agree or they differ. These seven datasets, roughly grouped in three categories i.e. rain-gauge based (APHRODITE, CPC-UNI), satellite-based (TRMM, GPCP1DD) and reanalysis based (ERA-Interim, MERRA, and JRA55), having a common data period 1998–2007 are considered. Focus is to examine precipitation extremes in the summer monsoon rainfall over South Asia, East Asia and Southeast Asia. Measures of extreme precipitation include the percentile thresholds, frequency of extreme precipitation events and other quantities. Results reveal that the differences in displaying extremes among the datasets are small over South Asia and East Asia but large differences among the datasets are displayed over the Southeast Asian region including the maritime continent. Furthermore, precipitation data appear to be more consistent over East Asia among the seven datasets. Decadal trends in extreme precipitation are consistent with known results over South and East Asia. No trends in extreme precipitation events are exhibited over Southeast Asia. Outputs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulation data are categorized as high, medium and low-resolution models. The regions displaying maximum intensity of extreme precipitation appear to be dependent on model resolution. High-resolution models simulate maximum intensity of extreme precipitation over the Indian sub-continent, medium-resolution models over northeast India and South China and the low-resolution models over Bangladesh, Myanmar and Thailand. In summary, there are differences in displaying extreme precipitation statistics among the seven datasets considered here and among the 29 CMIP5 model data outputs.