Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
393
result(s) for
"Superhumps"
Sort by:
NY Ser: Outburst Activity and Multiperiodic Processes in its Various Stages During 2014 and 2016
by
Sosnovskij, A. A.
,
Malanushenko, V. P.
,
Pit’, N. V.
in
Accretion disks
,
Astronomy
,
Astrophysics
2018
Results from observation campaigns for the dwarf nova NY Ser during 2014 and 2016 are presented. Data were obtained on a total of 126 nights in 2014 that include 20 normal outbursts and one superoutburst and on 22 nights in 2016 that include 5 normal outbursts. The shape of the curves for the normal outbursts indicated the existence of “outside-in” and “inside-out” outbursts in this system. In different stages of outburst activity (quiescent state, outburst, and superoutburst) NY Ser manifests brightness oscillations with different periods. In the quiescent state and in normal outbursts, the orbital period 0
d
.097558(6) predominated. During the superoutburst we identified two stages in the evolution of superhumps: a stage in which the tidal instability of the accretion disk increases (A) and a stage with developed superhumps (B). Stage A for NY Ser has been identified for the first time, but its duration and period are not uniquely determined. In stage B, positive superhumps with an average period of 0
d
.10464(9) and a period excess of ε = 0.072 were recorded and negative superhumps with an average period of 0
d
.0938(1) and a period deficit of ε = -0.038 were detected for the first time.
Journal Article
ASASSN-19fy: Features of a Dwarf Nova in the “Period Gap”
by
Sosnovskij, A. A.
,
Pit, N. V.
,
Antonyuk, K. A.
in
Astronomy
,
Astrophysical observatories
,
Astrophysics
2023
Photometric studies of the dwarf nova ASASSN-19fy in the “period gap” were carried out in 2020-2021 over 24 nights at the Crimean Astrophysical Observatory of the Russian Academy of Sciences and 3 nights at the Sanglokh International Astronomical Observatory of the Institute of Astrophysics, National Academy of Sciences of Tajikistan. The observations covered a superoutburst, two successive rebrightenings, and a slow return to the pre-outburst (quiescent) state. During this time, superhumps were observed, in the evolution of which the stages of developed superhumps “B,” their damping “C,” and a transition between them were identified. The average period of the superhumps in stage “B” was 0.09278(13) days and it was found its increase during this stage at a rate of (dP / dT) / P = 10·10
–5
. In stage “C” the period of the superhumps was equal to 0.092289(15) days. It is shown that ASASSN-19fy is the twelfth object to join the group of long-period dwarf novae similar to WZ Sge-type stars.
Journal Article
Recent observations of humps and superhumps and an estimation of outburst parameters of the AM CVn star CR Boo
by
Dimitrov, Wojciech
,
Boeva, Svetlana
,
Latev, Georgi
in
Astrophysics
,
Brightness
,
Celestial bodies
2022
We present our observational results of AM CVn star CR Boo in the UBVR bands. Our observational campaign includes data obtained over 5 nights with the National Astronomical Observatory Rozhen, Belogradchik, and the AS Vidojevica telescopes. During the whole time of our observations the brightness of the system varied between 13.95 – 17.23 in the B band. We report the appearance of humps during the period of quiescence and superhumps during the active state of the object, (where the latter are detected on two nights). We obtain the superhumps periodicity for two nights, Psh≈24.76−24.92 min. The color during maximum brightness is estimated as −0.107<(B−V)0<0.257 and the corresponding temperature is in the range as 7700 [K] < T(B−V)0 < 11 700 [K]. We found that CR Boo varies from bluer to redder in the nights with outbursts activity. The star becomes bluer during the times of superhumps.
Journal Article
Superhump and outburst activity of the cataclysmic variable RZ LMi in the U - and optical passbands
by
Katysheva, N A
,
Chochol, D
,
Vozyakova, O V
in
Astrophysics
,
Brightness
,
Cataclysmic variables
2018
An analysis of the new U,B,V,RC,IC-photometry of the cataclysmic variable RZ LMi obtained in 2016–17 showed the largest (U−B) colour excess in quiescence as well as during the decline of brightness, associated with the outbursts activity. The smallest (U−B) colour excess was found during the brightness increase from the quiescence. In contrast to the (U−B) colour index, the (B−V),(V−RC),(RC−IC) colour indices exhibits the largest colour excesses near the maximum of the outburst and the smallest during the quiescence. The (B−V) colour index showed also a large excess 1–2 days before a minimum. The detailed study of superhumps during the maximum of activity reveals the largest (U−B) colour excess at the time of the minimum brightness of superhumps. The (B−RC) colour index exhibits a similar behaviour, but with a phase shift of +0.1–+0.2 period of superhumps. The tracks in two-colour and colour-magnitude diagrams during superoutbursts are compared with the data for other cataclysmic variables during their outbursts as well as with published theoretical calculations.
Journal Article
The 2001 Superoutburst of WZ Sagittae
2002
We report the results of a worldwide campaign to observe WZ Sagittae during its 2001 superoutburst. After a 23 yr slumber at
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $V=15.5$ \\end{document}
, the star rose within 2 days to a peak brightness of 8.2, and showed a main eruption lasting 25 days. The return to quiescence was punctuated by 12 small eruptions, of ∼1 mag amplitude and 2 day recurrence time; these “echo outbursts” are of uncertain origin, but somewhat resemble the normal outbursts of dwarf novae. After 52 days, the star began a slow decline to quiescence.
Periodic waves in the light curve closely followed the pattern seen in the 1978 superoutburst: a strong orbital signal dominated the first 12 days, followed by a powerfulcommon superhumpat 0.05721(5) day, 0.92(8)% longer than
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{\\mathrm{orb}\\,}$ \\end{document}
. The latter endured for at least 90 days, although probably mutating into a “late” superhump with a slightly longer mean period [0.05736(5) day]. The superhump appeared to follow familiar rules for such phenomena in dwarf novae, with components given by linear combinations of two basic frequencies: the orbital frequency
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $\\omega _{o}$ \\end{document}
and an unseen low frequency Ω, believed to represent the accretion disk’s apsidal precession. Long time series reveal an intricate fine structure, with ∼20 incommensurate frequencies. Essentially all components occurred at a frequency
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $n\\omega _{o}-m\\Omega $ \\end{document}
, with
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $m=1$ \\end{document}
, …,
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $n$ \\end{document}
. But during its first week, the common superhump showed primary components at
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $n\\omega _{o}-\\Omega $ \\end{document}
, for
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $n=1$ \\end{document}
, 2, 3, 4, 5, 6, 7, 8, 9 (i.e.,
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $m=1$ \\end{document}
consistently); a month later, the dominant power shifted to components with
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $m=n-1$ \\end{document}
. This may arise from a shift in the disk’s spiral‐arm pattern, likely to be the underlying cause of superhumps.
The great majority of frequency components are redshifted from the harmonics of
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $\\omega _{o}$ \\end{document}
, consistent with the hypothesis of apsidal advance (prograde precession). But a component at 35.42 cycles day−1suggests the possibility of a retrograde precession at a different rate, probably
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $N=0.13\\pm 0.02$ \\end{document}
cycles day−1.
The eclipses permit measuring the location and brightness of the mass‐transfer hot spot. The disk must be very eccentric and nearly as large as the white dwarf’s Roche lobe. The hot‐spot luminosity exceeds its quiescent value by a factor of up to 60. This indicates that enhanced mass transfer from the secondary plays a major role in the eruption.
Journal Article
Time-Resolved Optical Photometry of the Ultracompact Binary 4U 0614+091
by
Hernandez-Peralta, H.
,
Villaver, E.
,
Watson, C. A.
in
Accretion disks
,
Astronomical photometry
,
Astronomy
2008
We present a detailed optical study of the ultracompact X-ray binary 4U 0614+091. We have used 63 hr of time-resolved optical photometry taken with three different telescopes (IAC80, NOT, and SPM) to search for optical modulations. The power spectra of each data set reveals sinusoidal modulations with different periods, which are not always present. The strongest modulation has a period of 51.3 minutes, a semiamplitude of 4.6 mmag, and is present in the IAC80 data. The SPM and NOT data show periods of 42 minutes and 64 minutes, respectively, but with much weaker amplitudes, 2.6 mmag and 1.3 mmag, respectively. These modulations arise from either X-ray irradiation of the inner face of the secondary star and/or a superhump modulation from the accretion disk, or quasi-periodic modulations in the accretion disk. It is unclear whether these periods/quasi-periodic modulations are related to the orbital period; however, the strongest period of 51.3 minutes is close to earlier tentative orbital periods. Further observations taken over a long baseline are encouraged.
Journal Article
Late Evolution of Cataclysmic Variables
1998
We study the evolution of hydrogen‐rich cataclysmic variables (CVs) near minimum orbital period at ∼78 minutes. As has been known for many years, these are among the most intrinsically common CVs, but they hide fairly well because of their faintness and low incidence of eruptions. We discuss their number and observational signatures, paying special attention to those that may have passed minimum orbital period—the “period bouncers.” The status of binaries near minimum period is best determined by the mass ratio, and this is best constrained by measuring the accretion disk precession frequency, because that frequency is readily accessible to observation and proportional to the secondary star's mass. This method reveals four stars that are good candidates to have survived period bounce; two appear to have secondaries as puny as 0.02
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $M_{\\odot }$ \\end{document}
. But each star can have bounced only recently if at all.There is still no strong evidence of any long era of evolution in a state of increasing period.This conflicts sharply with discussions of observational data that have identified dozens of known CVs with this state. The total space density of cataclysmic variables is ∼10−5pc−3, with short‐period systems constituting ∼75% of the total. Both estimates are far less than predicted by simple theories of evolution. It is probably necessary to have some means of destroying CVs before they reach the predicted very high space densities. This can be done by invoking an angular momentum loss mechanism that does not quickly subside as the mass ratio becomes very low.
Journal Article
Superhumps in Cataclysmic Binaries. XXIV. Twenty More Dwarf Novae
by
Butterworth, Neil
,
Walker, Stan
,
Skillman, David R.
in
Acoustic spectra
,
Astronomical photometry
,
Dwarf novae
2003
We report precise measures of the orbital and superhump period in 20 more dwarf novae. For 10 stars, we report new and confirmed spectroscopic periods—signifying the orbital period
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{o}$ \\end{document}
—as well as the superhump period
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{\\mathrm{sh}\\,}$ \\end{document}
. These are GX Cas, HO Del, HS Vir, BC UMa, RZ Leo, KV Dra, KS UMa, TU Crt, QW Ser, and RZ Sge. For the remaining 10, we report a medley of
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{o}$ \\end{document}
and
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{\\mathrm{sh}\\,}$ \\end{document}
measurements from photometry; most are new, with some confirmations of previous values. These are KV And, LL And, WX Cet, MM Hya, AO Oct, V2051 Oph, NY Ser, KK Tel, HV Vir, and RX J1155.4−5641.
Periods, as usual, can be measured to high accuracy, and these are of special interest since they carry dynamical information about the binary. We still have not quite learned how to read the music, but a few things are clear. The fractional superhump excess
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $\\varepsilon [ =( P_{\\mathrm{sh}\\,}-P_{o}) / P_{o}] $ \\end{document}
varies smoothly with
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{o}$ \\end{document}
. The scatter of the points about that smooth curve is quite low, and can be used to limit the intrinsic scatter in
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $M_{1}$ \\end{document}
, the white dwarf mass, and the mass‐radius relation of the secondary. The dispersion in
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $M_{1}$ \\end{document}
does not exceed 24%, and the secondary‐star radii scatter by no more than 11% from a fixed mass‐radius relation. For the well‐behaved part of
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $\\varepsilon ( P_{o}) $ \\end{document}
space, we estimate from superhump theory that the secondaries are
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $18\\% \\pm 6\\% $ \\end{document}
larger than theoretical ZAMS stars. This affects some other testable predictions about the secondaries: at a fixed
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $P_{o}$ \\end{document}
, it suggests that the secondaries are (compared with ZAMS predictions)
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $40\\% \\pm 14\\% $ \\end{document}
less massive,
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $12\\% \\pm 4\\% $ \\end{document}
smaller,
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $19\\% \\pm 6\\% $ \\end{document}
cooler, and less luminous by a factor of 2.5(7). The presence of a well‐defined mass‐radius relation, reflected in a well‐defined
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{
Journal Article
Dwarf-Nova Outbursts
1996
Outburst mechanisms of dwarf novae are discussed. There is a rich variety in outburst behaviors of nonmagnetic cataclysmic variable stars, starting from nonoutbursting nova-like stars to various sub-classes of dwarf novae (i. e., U Gem-type, Z Cam-type, and SU UMa-type). A unification model for dwarf nova outbursts is proposed within the basic framework of the disk instability model in which two different intrinsic instabilities (i. e., the thermal instability and the tidal instability) within accretion disks play an essential role. Nonmagnetic cataclysmic variables are classified into four regions in the orbital-period versus mass-transfer-rate diagram, showing different combinations of stability behavior for the two intrinsic instabilities in accretion disks, and their different outburst behaviors are basically understood in this diagram. We discuss several problems concerning the thermal limit-cycle instability model for dwarf novae above the period gap. We then discuss the thermal-tidal instability model for SU UMa stars, dwarf novae below the period gap, in which the coupling of the two intrinsic instabilities in the accretion disk plays a unique role. In particular, a rich variety of outburst behaviors of cataclysmic variables below the period gap (i. e., starting from \"permanent superhumpers,\" to Z Cam-like SU UMa stars, \"ER UMa stars,\" to ordinary SU UMa stars, and finally to WZ Sge stars) is understood by the thermal-tidal instability model.
Journal Article
Superhumps in Cataclysmic Binaries. XXIII. V442 Ophiuchi and RX J1643.7+3402
by
Butterworth, Neil
,
Skillman, David R.
,
Fenton, William H.
in
Astronomical photometry
,
Fictitious names
,
Hemic system
2002
We report the results of long observing campaigns on two novalike variables: V442 Ophiuchi and RX J1643.7+3402. These stars have high‐excitation spectra, complex line profiles signifying mass loss at particular orbital phases, and similar orbital periods (respectively, 0.12433 and 0.12056 days). They are well‐credentialed members of the SW Sex class of cataclysmic variables. Their light curves are also quite complex. V442 Oph shows periodic signals with periods of 0.12090(8) and 4.37(15) days, and RX J1643.7+3402 shows similar signals at 0.11696(8) and 4.05(12) days. We interpret these short and long periods, respectively, as a “negative superhump” and the wobble period of the accretion disk. The superhump could then possibly arise from the heating of the secondary (and structures fixed in the orbital frame) by inner‐disk radiation, which reaches the secondary relatively unimpeded since the disk is not coplanar. At higher frequencies, both stars show another type of variability: quasi‐periodic oscillations with a period near 1000 s. Underlying these strong signals of low stability may be weak signals of higher stability. Similar quasi‐periodic oscillations, and negative superhumps, are quite common features in SW Sex stars. Both can in principle be explained by ascribing strong magnetism to the white dwarf member of the binary; and we suggest that SW Sex stars are borderline AM Herculis binaries, usually drowned by a high accretion rate. This would provide an ancestor channel for AM Hers, whose origin is still mysterious.
Journal Article